6174

Last updated

The number 6174 is known as Kaprekar's constant [1] [2] [3] after the Indian mathematician D. R. Kaprekar. This number is renowned for the following rule:

Contents

  1. Take any four-digit number, using at least two different digits (leading zeros are allowed).
  2. Arrange the digits in descending and then in ascending order to get two four-digit numbers, adding leading zeros if necessary.
  3. Subtract the smaller number from the bigger number.
  4. Go back to step 2 and repeat.

The above process, known as Kaprekar's routine, will always reach its fixed point, 6174, in at most 7 iterations. [4] Once 6174 is reached, the process will continue yielding 7641 – 1467 = 6174. For example, choose 1459:

The only four-digit numbers for which Kaprekar's routine does not reach 6174 are repdigits such as 1111, which give the result 0000 after a single iteration. All other four-digit numbers eventually reach 6174 if leading zeros are used to keep the number of digits at 4. For numbers with three identical digits and a fourth digit that is one higher or lower (such as 2111), it is essential to treat 3-digit numbers with a leading zero; for example: 2111 – 1112 = 0999; 9990 – 999 = 8991; 9981 – 1899 = 8082; 8820 – 288 = 8532; 8532 – 2358 = 6174. [5]

617361746175
Cardinal six thousand one hundred seventy-four
Ordinal 6174th
(six thousand one hundred seventy-fourth)
Factorization 2 × 32 × 73
Divisors 1, 2, 3, 6, 7, 9, 14, 18, 21, 42, 49, 63, 98, 126, 147, 294, 343, 441, 686, 882, 1029, 2058, 3087, 6174
Greek numeral ,ϚΡΟΔ´
Roman numeral VMCLXXIV, or VICLXXIV
Binary 11000000111102
Ternary 221102003
Senary 443306
Octal 140368
Duodecimal 36A612
Hexadecimal 181E16

Other "Kaprekar's constants"

There can be analogous fixed points for digit lengths other than four; for instance, if we use 3-digit numbers, then most sequences (i.e., other than repdigits such as 111) will terminate in the value 495 in at most 6 iterations. Sometimes these numbers (495, 6174, and their counterparts in other digit lengths or in bases other than 10) are called "Peyush constants" named after Peyush Dixit who solved this routine as a part of his IMO 2000 (International Mathematical Olympiad, Year 2000) thesis. [6]


Other properties

Related Research Articles

In recreational mathematics, a repunit is a number like 11, 111, or 1111 that contains only the digit 1 — a more specific type of repdigit. The term stands for "repeated unit" and was coined in 1966 by Albert H. Beiler in his book Recreations in the Theory of Numbers.

In mathematics, a natural number in a given number base is a -Kaprekar number if the representation of its square in that base can be split into two parts, where the second part has digits, that add up to the original number. For example, in base 10, 45 is a 2-Kaprekar number, because 45² = 2025, and 20 + 25 = 45. The numbers are named after D. R. Kaprekar.

2000 is a natural number following 1999 and preceding 2001.

An emirp is a prime number that results in a different prime when its decimal digits are reversed. This definition excludes the related palindromic primes. The term reversible prime is used to mean the same as emirp, but may also, ambiguously, include the palindromic primes.

A Friedman number is an integer, which represented in a given numeral system, is the result of a non-trivial expression using all its own digits in combination with any of the four basic arithmetic operators (+, −, ×, ÷), additive inverses, parentheses, exponentiation, and concatenation. Here, non-trivial means that at least one operation besides concatenation is used. Leading zeros cannot be used, since that would also result in trivial Friedman numbers, such as 024 = 20 + 4. For example, 347 is a Friedman number in the decimal numeral system, since 347 = 73 + 4. The decimal Friedman numbers are:

<span class="mw-page-title-main">1,000,000</span> Natural number

1,000,000, or one thousand thousand, is the natural number following 999,999 and preceding 1,000,001. The word is derived from the early Italian millione, from mille, "thousand", plus the augmentative suffix -one.

<span class="mw-page-title-main">1,000,000,000</span> Natural number

1,000,000,000 is the natural number following 999,999,999 and preceding 1,000,000,001. With a number, "billion" can be abbreviated as b, bil or bn.

A Lychrel number is a natural number that cannot form a palindrome through the iterative process of repeatedly reversing its digits and adding the resulting numbers. This process is sometimes called the 196-algorithm, after the most famous number associated with the process. In base ten, no Lychrel numbers have been yet proven to exist, but many, including 196, are suspected on heuristic and statistical grounds. The name "Lychrel" was coined by Wade Van Landingham as a rough anagram of "Cheryl", his girlfriend's first name.

In number theory, Kaprekar's routine is an iterative algorithm named after its inventor, Indian mathematician D. R. Kaprekar. Each iteration starts with a number, sorts the digits into descending and ascending order, and calculates the difference between the two new numbers.

<span class="mw-page-title-main">D. R. Kaprekar</span> Indian recreational mathematician (1905–1986)

Dattatreya Ramchandra Kaprekar was an Indian recreational mathematician who described several classes of natural numbers including the Kaprekar, harshad and self numbers and discovered the Kaprekar's constant, named after him. Despite having no formal postgraduate training and working as a schoolteacher, he published extensively and became well known in recreational mathematics circles.

In number theory, a Dudeney number in a given number base is a natural number equal to the perfect cube of another natural number such that the digit sum of the first natural number is equal to the second. The name derives from Henry Dudeney, who noted the existence of these numbers in one of his puzzles, Root Extraction, where a professor in retirement at Colney Hatch postulates this as a general method for root extraction.

100,000,000 is the natural number following 99,999,999 and preceding 100,000,001.

In number theory, a narcissistic number in a given number base is a number that is the sum of its own digits each raised to the power of the number of digits.

A sum-product number in a given number base is a natural number that is equal to the product of the sum of its digits and the product of its digits.

A sequence of six consecutive nines occurs in the decimal representation of the number pi, starting at the 762nd decimal place. It has become famous because of the mathematical coincidence, and because of the idea that one could memorize the digits of π up to that point, and then suggest that π is rational. The earliest known mention of this idea occurs in Douglas Hofstadter's 1985 book Metamagical Themas, where Hofstadter states

I myself once learned 380 digits of π, when I was a crazy high-school kid. My never-attained ambition was to reach the spot, 762 digits out in the decimal expansion, where it goes "999999", so that I could recite it out loud, come to those six 9's, and then impishly say, "and so on!"

495 is the natural number following 494 and preceding 496. It is a pentatope number. The maximal number of pieces that can be obtained by cutting an annulus with 30 cuts.

In number theory, a factorion in a given number base is a natural number that equals the sum of the factorials of its digits. The name factorion was coined by the author Clifford A. Pickover.

In number theory, a perfect digit-to-digit invariant is a natural number in a given number base that is equal to the sum of its digits each raised to the power of itself. An example in base 10 is 3435, because . The term "Munchausen number" was coined by Dutch mathematician and software engineer Daan van Berkel in 2009, as this evokes the story of Baron Munchausen raising himself up by his own ponytail because each digit is raised to the power of itself.

In number theory and mathematical logic, a Meertens number in a given number base is a natural number that is its own Gödel number. It was named after Lambert Meertens by Richard S. Bird as a present during the celebration of his 25 years at the CWI, Amsterdam.

Digit-reassembly numbers, or Osiris numbers, are numbers that are equal to the sum of permutations of sub-samples of their own digits. For example, 132 = 12 + 21 + 13 + 31 + 23 + 32.

References

  1. Nishiyama, Yutaka (March 2006). "Mysterious number 6174". Plus Magazine .
  2. Kaprekar DR (1955). "An Interesting Property of the Number 6174". Scripta Mathematica . 15: 244–245.
  3. Kaprekar DR (1980). "On Kaprekar Numbers". Journal of Recreational Mathematics. 13 (2): 81–82.
  4. Hanover 2017, p. 1, Overview.
  5. "Kaprekar's Iterations and Numbers". www.cut-the-knot.org. Retrieved 2022-09-21.
  6. Hanover 2017, p. 14, Operations.