78xx

Last updated
7805 in TO-220 and TO-92 packages Voltage Regulator.png
7805 in TO-220 and TO-92 packages
Internal die of a Tesla MA7805 Tesla-MA7805-HD.jpg
Internal die of a Tesla MA7805

78xx (sometimes L78xx, LM78xx, MC78xx...) is a family of self-contained fixed linear voltage regulator integrated circuits. The 78xx family is commonly used in electronic circuits requiring a regulated power supply due to their ease-of-use and low cost.

Contents

Nomenclature and packaging

For ICs within the 78xx family, the xx is replaced with two digits, indicating the output voltage (for example, the 7805 has a 5-volt output, while the 7812 produces 12 volts). The 78xx line are positive voltage regulators: they produce a voltage that is positive relative to a common ground. There is a related line of 79xx devices which are complementary negative voltage regulators. 78xx and 79xx ICs can be used in combination to provide positive and negative supply voltages in the same circuit. [1]

78xx ICs have three terminals and are commonly found in the TO-220 form factor, although they are also available in TO-92, TO-3 'through hole' and SOT-23 surface-mount packages. These devices support an input voltage anywhere from around 2.5 volts over the intended output voltage up to a maximum of 35 to 40 volts depending on the model, and typically provide 1 or 1.5 amperes of current (though smaller or larger packages may have a lower or higher current rating). [2]

Family members

Typical application circuit for a simple power supply, showing transformer, bridge rectifier, 78xx regulator, and filter capacitors Power supply with linear voltage regulator.svg
Typical application circuit for a simple power supply, showing transformer, bridge rectifier, 78xx regulator, and filter capacitors

78xx

There are common configurations for 78xx ICs, including 7805 (5 V), 7806 (6 V), 7808 (8 V), 7809 (9 V), 7810 (10 V), 7812 (12 V), 7815 (15 V), 7818 (18 V), and 7824 (24 V) versions. The 7805 is the most common, as its regulated 5-volt supply provides a convenient power source for most TTL components.

Less common are lower-power versions such as the LM78Mxx series (500 mA) and LM78Lxx series (100 mA) from National Semiconductor. Some devices provide slightly different voltages than usual, such as the LM78L62 (6.2 volts) and LM78L82 (8.2 volts) as well as the STMicroelectronics L78L33ACZ (3.3 volts).

The 7805 has been used in some ATX power supply designs for the +5 VSB (+5 V standby) output. [3]

79xx

The 79xx devices have a similar "part number" to "voltage output" scheme, but their outputs are negative voltage, for example 7905 is −5 V and 7912 is −12 V.

The 7905 and/or 7912 were popular in many older ATX power supply designs, [4] [5] and some newer ATX power supplies may have a 7912. [6]

Unrelated devices

The LM78S40 from Fairchild is not part of the 78xx family and does not use the same design. It is a component in switching regulator designs and is not a linear regulator like other 78xx devices. The 7803SR from Datel is a full switching power supply module (designed as a drop-in replacement for 78xx chips), and not a linear regulator like the 78xx ICs.

Advantages

Disadvantages

See also

Related Research Articles

<span class="mw-page-title-main">Operational amplifier</span> High-gain voltage amplifier with a differential input

An operational amplifier is a DC-coupled high-gain electronic voltage amplifier with a differential input and, usually, a single-ended output. In this configuration, an op amp produces an output potential that is typically 100,000 times larger than the potential difference between its input terminals. The operational amplifier traces its origin and name to analog computers, where they were used to perform mathematical operations in linear, non-linear, and frequency-dependent circuits.

<span class="mw-page-title-main">Comparator</span> Device that compares two voltages or currents

In electronics, a comparator is a device that compares two voltages or currents and outputs a digital signal indicating which is larger. It has two analog input terminals and and one binary digital output . The output is ideally

Transistor–transistor logic (TTL) is a logic family built from bipolar junction transistors. Its name signifies that transistors perform both the logic function and the amplifying function, as opposed to earlier resistor–transistor logic (RTL) and diode–transistor logic (DTL).

<span class="mw-page-title-main">Rectifier</span> Electrical device that converts AC to DC

A rectifier is an electrical device that converts alternating current (AC), which periodically reverses direction, to direct current (DC), which flows in only one direction. The reverse operation is performed by an inverter.

<span class="mw-page-title-main">Power supply</span> Electronic device that converts or regulates electric energy and supplies it to a load

A power supply is an electrical device that supplies electric power to an electrical load. The main purpose of a power supply is to convert electric current from a source to the correct voltage, current, and frequency to power the load. As a result, power supplies are sometimes referred to as electric power converters. Some power supplies are separate standalone pieces of equipment, while others are built into the load appliances that they power. Examples of the latter include power supplies found in desktop computers and consumer electronics devices. Other functions that power supplies may perform include limiting the current drawn by the load to safe levels, shutting off the current in the event of an electrical fault, power conditioning to prevent electronic noise or voltage surges on the input from reaching the load, power-factor correction, and storing energy so it can continue to power the load in the event of a temporary interruption in the source power.

In electronics, a linear regulator is a voltage regulator used to maintain a steady voltage. The resistance of the regulator varies in accordance with both the input voltage and the load, resulting in a constant voltage output. The regulating circuit varies its resistance, continuously adjusting a voltage divider network to maintain a constant output voltage and continually dissipating the difference between the input and regulated voltages as waste heat. By contrast, a switching regulator uses an active device that switches on and off to maintain an average value of output. Because the regulated voltage of a linear regulator must always be lower than input voltage, efficiency is limited and the input voltage must be high enough to always allow the active device to reduce the voltage by some amount.

<span class="mw-page-title-main">Switched-mode power supply</span> Power supply with switching regulator

A switched-mode power supply (SMPS), also called switching-mode power supply, switch-mode power supply, switched power supply, or simply switcher, is an electronic power supply that incorporates a switching regulator to convert electrical power efficiently.

<span class="mw-page-title-main">7400-series integrated circuits</span> Series of transistor–transistor logic integrated circuits

The 7400 series is a popular logic family of transistor–transistor logic (TTL) integrated circuits (ICs).

A DC-to-DC converter is an electronic circuit or electromechanical device that converts a source of direct current (DC) from one voltage level to another. It is a type of electric power converter. Power levels range from very low to very high.

<span class="mw-page-title-main">Voltage regulator</span> System designed to maintain a constant voltage

A voltage regulator is a system designed to automatically maintain a constant voltage. It may use a simple feed-forward design or may include negative feedback. It may use an electromechanical mechanism, or electronic components. Depending on the design, it may be used to regulate one or more AC or DC voltages.

<span class="mw-page-title-main">Low-dropout regulator</span> DC linear voltage regulator

A low-dropout regulator is a DC linear voltage regulator that can operate even when the supply voltage is very close to the output voltage. The advantages of an LDO regulator over other DC-to-DC voltage regulators include: the absence of switching noise ; smaller device size ; and greater design simplicity. The disadvantage is that linear DC regulators must dissipate heat in order to operate.

<span class="mw-page-title-main">2N3055</span> Early power transistor

The 2N3055 is a silicon NPN power transistor intended for general purpose applications. It was introduced in the early 1960s by RCA using a hometaxial power transistor process, transitioned to an epitaxial base in the mid-1970s. Its numbering follows the JEDEC standard. It is a transistor type of enduring popularity.

Current limiting is the practice of imposing a limit on the current that may be delivered to a load to protect the circuit generating or transmitting the current from harmful effects due to a short-circuit or overload. The term "current limiting" is also used to define a type of overcurrent protective device. According to the 2020 NEC/NFPA 70, a current-limiting overcurrent protective device is defined as, "A device that, when interrupting currents in its current-limiting range, reduces the current flowing in the faulted circuit to a magnitude substantially less than that obtainable in the same circuit if the device were replaced with a solid conductor having compatible impedance."

<span class="mw-page-title-main">LM317</span> Adjustable linear voltage regulator

The LM317 is an adjustable positive linear voltage regulator. It was designed by Bob Dobkin in 1976 while he worked at National Semiconductor.

<span class="mw-page-title-main">Single-ended primary-inductor converter</span>

The single-ended primary-inductor converter (SEPIC) is a type of DC/DC converter that allows the electrical potential (voltage) at its output to be greater than, less than, or equal to that at its input. The output of the SEPIC is controlled by the duty cycle of the control switch (S1).

<span class="mw-page-title-main">Power supply unit (computer)</span> Internal computer component that provides power to other components

A power supply unit (PSU) converts mains AC to low-voltage regulated DC power for the internal components of a computer. Modern personal computers universally use switched-mode power supplies. Some power supplies have a manual switch for selecting input voltage, while others automatically adapt to the main voltage.

The undervoltage-lockout (UVLO) is an electronic circuit used to turn off the power of an electronic device in the event of the voltage dropping below the operational value that could cause unpredictable system behavior. For instance, in battery powered embedded devices, UVLOs can be used to monitor the battery voltage and turn off the embedded device's circuit if the battery voltage drops below a specific threshold, thus protecting the associated equipment. Some variants may also have unique values for power-up (positive-going) and power-down (negative-going) thresholds.

<span class="mw-page-title-main">Joule thief</span> Voltage booster electronic circuit

A joule thief is a minimalist self-oscillating voltage booster that is small, low-cost, and easy to build, typically used for driving small loads, such as driving an LED using a 1.5 volt battery. This circuit is also known by other names such as blocking oscillator, joule ringer, or vampire torch. It can use nearly all of the energy in a single-cell electric battery, even far below the voltage where other circuits consider the battery fully discharged ; hence the name, which suggests the notion that the circuit is stealing energy or "joules" from the source – the term is a pun on "jewel thief". The circuit is a variant of the blocking oscillator that forms an unregulated voltage boost converter.

In electronics, power amplifier classes are letter symbols applied to different power amplifier types. The class gives a broad indication of an amplifier's characteristics and performance. The first three classes are related to the time period that the active amplifier device is passing current, expressed as a fraction of the period of a signal waveform applied to the input. This metric is known as conduction angle (θ). A class A amplifier is conducting through all the period of the signal (θ=360°); Class B only for one-half the input period (θ=180°), class C for much less than half the input period (θ<180°). Class D amplifiers operate their output device in a switching manner; the fraction of the time that the device is conducting may be adjusted so a pulse-width modulation output can be obtained from the stage.

References

  1. Muhammad Rashid (13 January 2011). Power Electronics Handbook. Elsevier. pp. 609–. ISBN   978-0-12-382037-2.
  2. Balch, Mark (20 June 2003). Complete Digital Design : A Comprehensive Guide to Digital Electronics and Computer System Architecture: A Comprehensive Guide to Digital Electronics and Computer System Architecture. McGraw Hill Professional. ISBN   978-0-07-140927-8.
  3. "Maxpower PX-300W, 300-Watt ATX Power Supply Schematic".
  4. FSP145-60SP, 145-Watt ATX Power Supply Schematic.
  5. Delta Electronics DPS-260-2A, 260-Watt ATX Power Supply Schematic.
  6. "High-Efficiency 305-Watt ATX Reference Design Documentation Package" (PDF). ONSemi.com. ON Semiconductor.
  7. Electronic Circuit Analysis. Pearson Education India. 2012. pp. 14–. ISBN   978-81-317-5428-3.
  8. Oxer, Jonathan; Blemings, Hugh (28 December 2009). Practical Arduino: Cool Projects for Open Source Hardware. Apress. pp. 224–. ISBN   978-1-4302-2477-8.
  9. Biswanath, Paul (30 June 2014). Industrial Electronics and Control. PHI Learning Pvt. Ltd. pp. 35–. ISBN   978-81-203-4990-2.
  10. Warren Gay (17 September 2014). Mastering the Raspberry Pi. Apress. pp. 24–. ISBN   978-1-4842-0181-7.
  11. Charles Platt (19 October 2012). Encyclopedia of Electronic Components Volume 1: Resistors, Capacitors, Inductors, Switches, Encoders, Relays, Transistors. "O'Reilly Media, Inc.". pp. 163–. ISBN   978-1-4493-3387-4.

Further reading

App Notes

Datasheets