APEXC

Last updated

The APE(X)C, or All Purpose Electronic (X) Computer series was designed by Andrew Donald Booth at Birkbeck College, London in the early 1950s. His work on the APE(X)C series was sponsored by the British Rayon Research Association. [1] [2] Although the naming conventions are slightly unclear, it seems the first model belonged to the BRRA. [3] According to Booth, the X stood for X-company. [4]

Contents

One of the series was also known as the APE(X)C or All Purpose Electronic X-Ray Computer and was sited at Birkbeck.

Background

From 1943 on, Booth started working on the determination of crystal structures using X-ray diffraction data. The computations involved were extremely tedious and there was ample incentive for automating the process and he developed an analogue computer to compute the reciprocal spacings of the diffraction pattern. [5]

In 1947, along with his collaborator and future spouse Kathleen Britten, he spent a few months with von Neumann's team, which was the leading edge in computer research at the time.

ARC and SEC

Booth designed an electromechanical computer, the ARC (Automatic Relay Computer), in the late 1940s (1947-1948). [6] Later on, they built an experimental electronic computer named SEC (Simple Electronic Computer, designed around 1948-1949) - and finally, the APE(X)C (All-Purpose Electronic Computer) series. [7] [8] [9]

The computers were programmed by Kathleen. [7]

The APE(X) C series

The APE(X)C series included the following machines:

Only one of each of these machines was built, with the exception of HEC (and possibly MAC) which were commercial machines produced in quite large numbers for the time, around 150. They were similar in design, with various small differences, mostly in I/O equipment. The APEHC was a punched card machine while the APEXC, APERC and APENC were teletypers (keyboard and printer, plus paper tape reader and puncher). Also, the UCC had 8k words of storage, instead of 1k word for other machines, and the MAC used germanium diodes in replacement of many valves.

British Tabulating Machine Company machines

BTM Hollerith Electronic Computer 1 Prototype Hollerith Electronic Computer1 Prototype.jpg
BTM Hollerith Electronic Computer 1 Prototype

In March 1951, the British Tabulating Machine Company (BTM) sent a team to Andrew Booth's workshop. They then used his design to create the Hollerith Electronic Computer 1 (HEC 1) before the end of 1951. The computer was a direct copy of Andrew Booth's circuits with extra Input/output interfaces. The HEC 2 was the HEC 1 with smarter metal casings and was built for the Business Efficiency Exhibition in 1953. A slightly modified version of the HEC 2 was then marketed as HEC2M and 8 were sold. The HEC2M was succeeded by the HEC4. Around 100 HEC4s were sold in the late 1950s. [12]

The HEC used standard punched cards; the HEC 4 had a printer, too, and it featured several instructions (such as divide) and registers not found on the APEXC.

Technical description

An emulator for the APEXC series has been developed by MESS. They describe its functioning as follows:

The APEXC is an incredibly simple machine.


Instruction and data words are always 32 bits long. The processor uses integer arithmetic with 2's complement representation. Addresses are 10 bits long. The APEXC has no RAM, except for a 32-bit accumulator and a 32-bit data register (used along with the 32-bit accumulator to implement 64-bit shift instructions and hold the 64-bit result of a multiplication). Instructions and data are stored in two magnetic drums, for a total of 32 circular magnetic tracks of 32 words. Since the rotation rate is 3750rpm (62.5 rotations per second), the program execution speed can go from as high as the theoretical maximum of 1 kIPS to lower than 100IPS if program instructions and data are not contiguous. Nowadays, many say a pocket calculator is faster.
One oddity is that there is no program counter: each machine instruction includes the address of the next instruction. This design may sound weird, but it is the only way to achieve optimal performance with this cylinder-based memory.
The machine code is made of 15 instructions only, namely addition, subtraction, multiplication, load (3 variants), store (2 variants), conditional branch, right arithmetic bit shift, right bit rotation, punched-card input, punched-card output, machine stop, and bank-switching (which is never used on the APEXC, since it only has 1024 words of storage, and addresses are 10-bit-long). A so-called vector mode enables to repeat the same operation 32 times with 32 successive memory locations. Note the lack of bitwise and/or/xor and division. Also, note the lack of indirect addressing modes: dynamic modification of opcodes is the only way one may simulate it.
Another oddity is that the memory bus and the ALU are 1-bit-wide. There is a 64 kHz bit-clock and a 2 kHz word-clock, and each word memory and arithmetic operation is decomposed into 32 1-bit memory and arithmetic operations: this takes 32 bit cycles, for a total of 1 word cycle.
The processor is fairly efficient: most instructions take only 2 word cycles (1 for fetch, 1 for read operand and execute), with the exception of stores, shifts and multiplications. The APEXC CPU qualifies as RISC; there is no other adequate word.
Note there is no read-only memory (ROM), and therefore no bootstrap loader or default start-up program whatsoever. It is believed that no executive or operating system was ever written for the APEXC, although there were subroutine libraries of sorts for common arithmetic, I/O and debug tasks.
Operation of the machine is normally done through a control panel which allows the user to start, stop and resume the central processing unit, and to alter registers and memory when the CPU is stopped. When starting the machine, the address of the first instruction of the program to be executed must be entered in the control panel, then the run switch must be pressed. Most programs end with a stop instruction, which enables the operator to check the state of the machine, possibly run some post-mortem debugging procedures (a core dump routine is described in an APEXC programming book), then enter the address of another program and run it.

Two I/O devices were supported: a paper tape reader, and a paper tape puncher. The puncher output could be fed to a printer ('teletyper') unit when desirable. Printer output is emulated and is displayed on screen. Tape input was either computer-generated by the APEXC, or hand-typed with a special 32-key keyboard (each tape row had 5 data holes (<-> bits), which makes 32 different values). [13]

Further reading

Related Research Articles

EDSAC 1940s-1950s British computer

The Electronic Delay Storage Automatic Calculator (EDSAC) was an early British computer. Inspired by John von Neumann's seminal First Draft of a Report on the EDVAC, the machine was constructed by Maurice Wilkes and his team at the University of Cambridge Mathematical Laboratory in England. EDSAC was the second electronic digital stored-program computer to go into regular service.

PDP-8 First commercially successful minicomputer

The PDP-8 is a 12-bit minicomputer that was produced by Digital Equipment Corporation (DEC). It was the first commercially successful minicomputer, with over 50,000 units being sold over the model's lifetime. Its basic design follows the pioneering LINC but has a smaller instruction set, which is an expanded version of the PDP-5 instruction set. Similar machines from DEC are the PDP-12 which is a modernized version of the PDP-8 and LINC concepts, and the PDP-14 industrial controller system.

IBM 704 Vacuum-tube computer system

The IBM 704 is a large digital mainframe computer introduced by IBM in 1954. It was the first mass-produced computer with hardware for floating-point arithmetic. The IBM 704 Manual of operation states:

The type 704 Electronic Data-Processing Machine is a large-scale, high-speed electronic calculator controlled by an internally stored program of the single address type.

EDVAC Early computer

EDVAC was one of the earliest electronic computers. It was built by Moore School of Electrical Engineering, Pennsylvania. Along with ORDVAC, it was a successor to the ENIAC. Unlike ENIAC, it was binary rather than decimal, and was designed to be a stored-program computer.

IBM 1620 Small IBM scientific computer released in 1959

The IBM 1620 was announced by IBM on October 21, 1959, and marketed as an inexpensive scientific computer. After a total production of about two thousand machines, it was withdrawn on November 19, 1970. Modified versions of the 1620 were used as the CPU of the IBM 1710 and IBM 1720 Industrial Process Control Systems.

IBM 1401 1960s decimal computer

The IBM 1401 is a variable-wordlength decimal computer that was announced by IBM on October 5, 1959. The first member of the highly successful IBM 1400 series, it was aimed at replacing unit record equipment for processing data stored on punched cards and at providing peripheral services for larger computers. The 1401 is considered to be the Ford Model-T of the computer industry, because it was mass-produced and because of its sales volume. Over 12,000 units were produced and many were leased or resold after they were replaced with newer technology. The 1401 was withdrawn on February 8, 1971.

UNIVAC I First general-purpose computer design for business application (1951)

The UNIVAC I was the first general-purpose electronic digital computer design for business application produced in the United States. It was designed principally by J. Presper Eckert and John Mauchly, the inventors of the ENIAC. Design work was started by their company, Eckert–Mauchly Computer Corporation (EMCC), and was completed after the company had been acquired by Remington Rand. In the years before successor models of the UNIVAC I appeared, the machine was simply known as "the UNIVAC".

UNIVAC Series of mainframe computer models

UNIVAC was a line of electronic digital stored-program computers starting with the products of the Eckert–Mauchly Computer Corporation. Later the name was applied to a division of the Remington Rand company and successor organizations.

CSIRAC Australias first digital computer, and the fifth stored-program computer in the world

CSIRAC, originally known as CSIR Mk 1, was Australia's first digital computer, and the fifth stored program computer in the world. It is the oldest surviving first-generation electronic computer (the Zuse Z4 at the Deutsches Museum is older, but was electro-mechanical, not electronic), and was the first in the world to play digital music.

Von Neumann architecture Computer architecture where code and data share a common bus

The von Neumann architecture — also known as the von Neumann model or Princeton architecture — is a computer architecture based on a 1945 description by John von Neumann, and by others, in the First Draft of a Report on the EDVAC. The document describes a design architecture for an electronic digital computer with these components:

Manchester Baby First electronic stored-program computer, 1948

The Manchester Baby, also called the Small-Scale Experimental Machine (SSEM), was the first electronic stored-program computer. It was built at the University of Manchester by Frederic C. Williams, Tom Kilburn, and Geoff Tootill, and ran its first program on 21 June 1948.

IBM 1130 16-bit IBM minicomputer introduced in 1965

The IBM 1130 Computing System, introduced in 1965, was IBM's least expensive computer at that time. A binary 16-bit machine, it was marketed to price-sensitive, computing-intensive technical markets, like education and engineering, succeeding the decimal IBM 1620 in that market segment. Typical installations included a 1 megabyte disk drive that stored the operating system, compilers and object programs, with program source generated and maintained on punched cards. Fortran was the most common programming language used, but several others, including APL, were available.

AN/FSQ-7 Combat Direction Central

The AN/FSQ-7 Combat Direction Central, referred to as the Q7 for short, was a computerized command and control system for Cold War ground-controlled interception used in the USAF Semi-Automatic Ground Environment (SAGE) air defense network.

The DEUCE was one of the earliest British commercially available computers, built by English Electric from 1955. It was the production version of the Pilot ACE, itself a cut-down version of Alan Turing's ACE.

International Computers and Tabulators

International Computers and Tabulators or ICT was a British computer manufacturer, formed in 1959 by a merger of the British Tabulating Machine Company (BTM) and Powers-Samas. In 1963 it acquired the business computer divisions of Ferranti. It exported computers to many countries and in 1968 became part of International Computers Limited (ICL).

Elliott 803

The Elliott 803 is a small, medium-speed transistor digital computer which was manufactured by the British company Elliott Brothers in the 1960s. About 211 were built.

The Datamatic Division of Honeywell announced the H-800 electronic computer in 1958. The first installation occurred in 1960. A total of 89 were delivered. The H-800 design was part of a family of 48-bit word, three-address instruction format computers that descended from the Datamatic 1000, which was a joint Honeywell and Raytheon project started in 1955. The 1800 and 1800-II were follow-on designs to the H-800.

Kathleen Hylda Valerie Booth wrote the first assembly language and designed the assembler and autocode for the first computer systems at Birkbeck College, University of London. She helped design three different machines including the ARC, SEC, and APE(X)C.

Viatron

Viatron Computer Systems, or simply Viatron was an American computer company headquartered in Bedford, Massachusetts, and later Burlington, Massachusetts. Viatron coined the term "microprocessor" although it was not used in the sense in which the word microprocessor is used today.

Hollerith Electronic Computer

The Hollerith Electronic Computer (HEC) was produced by the British Tabulating Machine Company (BTM) and was based on a design by Professor Andrew Booth of Birkbeck College, London. It was Britain's first mass-produced business computer. The prototype first worked at the end of 1951.

References

  1. The British computer industry: crisis and development By Tim Kelly, page 41
  2. 1 2 Early British computers, Simon Hugh Lavington 1980
  3. History of Computing:Learning from the Past, Arthur Tatnall Springer, 2010
  4. Book 495 in Origins of cyberspace: a library on the history of computing, Diana H. Hook, Jeremy M. Norman, Michael R. Williams. Norman Publishing, 2002
  5. Andrew Brown (2005). J.D. Bernal, The Sage of Science. Oxford U.P. p. 276.
  6. Lavington, Simon Hugh (1980). Early British Computers: The Story of Vintage Computers and the People who Built Them. Manchester University Press. p. 62. ISBN   9780719008108.
  7. 1 2 3 Johnson, Roger (April 2008). "School of Computer Science & Information Systems: A Short History" (PDF). Birkbeck College. University of London. pp. 5–8. Retrieved 22 November 2018.
  8. "Automatic Computing Machinery: Bibliography Z-XII; 3. Anon., Digital Computer Research at Birkbeck College, Office of Naval Research (London Branch), Technical Report OANAR-50-49, 12 December 1949, 2 p." Mathematics of Computation. 4 (31): 171. 1950. doi: 10.1090/S0025-5718-50-99462-2 . ISSN   0025-5718.
  9. "11. Digital Computers, Birkbeck College, University of London". Digital Computer Newsletter. 2 (1): 4. 1950-01-01. Archived from the original on March 11, 2021.
  10. 1 2 Research, United States Office of Naval (1953). A survey of automatic digital computers. Office of Naval Research, Dept. of the Navy. pp.  4–5.
  11. 1 2 "COMPUTERS, OVERSEAS: 2. Birkbeck College Computer Laboratory (London, England)". Digital Computer Newsletter. 8 (1): 16–17. Jan 1956. Archived from the original on April 6, 2019.
  12. "School of Computer Science & Information Systems A Short History" (PDF). Birkbeck, University of London. Department of Computer Science and Information Systems. 2008. Retrieved 2015-06-02.
  13. http://mess.redump.net/sysinfo:apexc Multi Emulator Super System technical description of the APEXC series