APLP1

Last updated

APLP1
3qmk.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases APLP1 , APLP, amyloid beta precursor like protein 1
External IDs OMIM: 104775; MGI: 88046; HomoloGene: 68447; GeneCards: APLP1; OMA:APLP1 - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_005166
NM_001024807

NM_007467

RefSeq (protein)

NP_001019978
NP_005157

NP_031493

Location (UCSC) Chr 19: 35.87 – 35.88 Mb Chr 7: 30.13 – 30.14 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Amyloid precursor like protein 1, also known as APLP1, is a protein encoded by the APLP1 gene in humans. [5] [6] APLP1 along with APLP2 are important modulators of glucose and insulin homeostasis. [7]

Contents

Function

This gene encodes a member of the highly conserved amyloid precursor protein gene family. The encoded protein is a membrane-associated glycoprotein that is cleaved by secretases in a manner similar to amyloid beta A4 precursor protein cleavage. This cleavage liberates an intracellular cytoplasmic fragment that may act as a transcriptional activator. The encoded protein may also play a role in synaptic maturation during cortical development. Alternatively spliced transcript variants encoding different isoforms have been described. [5]

APLP1 and APLP2 double knockout mice display hypoglycemia and hyperinsulinemia indicating that these two proteins are important modulators of glucose and insulin homeostasis. [7]

APLP1 has also been implicated in the transmission pathologic α-synuclein in Parkinson's disease [8] [9]

Related Research Articles

<span class="mw-page-title-main">Beta-secretase 2</span> Enzyme found in humans

Beta-secretase 2 is an enzyme that cleaves Glu-Val-Asn-Leu!Asp-Ala-Glu-Phe in the Swedish variant of Alzheimer's amyloid precursor protein. BACE2 is a close homolog of BACE1.

<span class="mw-page-title-main">Amyloid beta</span> Group of peptides

Amyloid beta denotes peptides of 36–43 amino acids that are the main component of the amyloid plaques found in the brains of people with Alzheimer's disease. The peptides derive from the amyloid-beta precursor protein (APP), which is cleaved by beta secretase and gamma secretase to yield Aβ in a cholesterol-dependent process and substrate presentation. Both neurons and oligodendrocytes produce and release Aβ in the brain, contributing to formation of amyloid plaques. Aβ molecules can aggregate to form flexible soluble oligomers which may exist in several forms. It is now believed that certain misfolded oligomers can induce other Aβ molecules to also take the misfolded oligomeric form, leading to a chain reaction akin to a prion infection. The oligomers are toxic to nerve cells. The other protein implicated in Alzheimer's disease, tau protein, also forms such prion-like misfolded oligomers, and there is some evidence that misfolded Aβ can induce tau to misfold.

<span class="mw-page-title-main">Amyloid-beta precursor protein</span> Mammalian protein found in humans

Amyloid-beta precursor protein (APP) is an integral membrane protein expressed in many tissues and concentrated in the synapses of neurons. It functions as a cell surface receptor and has been implicated as a regulator of synapse formation, neural plasticity, antimicrobial activity, and iron export. It is coded for by the gene APP and regulated by substrate presentation. APP is best known as the precursor molecule whose proteolysis generates amyloid beta (Aβ), a polypeptide containing 37 to 49 amino acid residues, whose amyloid fibrillar form is the primary component of amyloid plaques found in the brains of Alzheimer's disease patients.

<span class="mw-page-title-main">Beta-secretase 1</span> Enzyme

Beta-secretase 1, also known as beta-site amyloid precursor protein cleaving enzyme 1, beta-site APP cleaving enzyme 1 (BACE1), membrane-associated aspartic protease 2, memapsin-2, aspartyl protease 2, and ASP2, is an enzyme that in humans is encoded by the BACE1 gene. Expression of BACE1 is observed mainly in neurons and oligodendrocytes.

<span class="mw-page-title-main">Gamma secretase</span> Type of protein

Gamma secretase is a multi-subunit protease complex, an integral membrane protein, that cleaves single-pass transmembrane proteins at residues within the transmembrane domain. Proteases of this type are known as intramembrane proteases. The most well-known substrate of gamma secretase is amyloid precursor protein, a large integral membrane protein that, when cleaved by both gamma and beta secretase, produces a short 37-43 amino acid peptide called amyloid beta whose abnormally folded fibrillar form is the primary component of amyloid plaques found in the brains of Alzheimer's disease patients. Gamma secretase is also critical in the related processing of several other type I integral membrane proteins, such as Notch, ErbB4, E-cadherin, N-cadherin, ephrin-B2, or CD44.

<span class="mw-page-title-main">Presenilin</span> Family of related multi class transmembrane proteins

Presenilins are a family of related multi-pass transmembrane proteins which constitute the catalytic subunits of the gamma-secretase intramembrane protease protein complex. They were first identified in screens for mutations causing early onset forms of familial Alzheimer's disease by Peter St George-Hyslop. Vertebrates have two presenilin genes, called PSEN1 that codes for presenilin 1 (PS-1) and PSEN2 that codes for presenilin 2 (PS-2). Both genes show conservation between species, with little difference between rat and human presenilins. The nematode worm C. elegans has two genes that resemble the presenilins and appear to be functionally similar, sel-12 and hop-1.

<span class="mw-page-title-main">Alpha secretase</span> Family of proteolytic enzymes

Alpha secretases are a family of proteolytic enzymes that cleave amyloid precursor protein (APP) in its transmembrane region. Specifically, alpha secretases cleave within the fragment that gives rise to the Alzheimer's disease-associated peptide amyloid beta when APP is instead processed by beta secretase and gamma secretase. The alpha-secretase pathway is the predominant APP processing pathway. Thus, alpha-secretase cleavage precludes amyloid beta formation and is considered to be part of the non-amyloidogenic pathway in APP processing. Alpha secretases are members of the ADAM family, which are expressed on the surfaces of cells and anchored in the cell membrane. Several such proteins, notably ADAM10, have been identified as possessing alpha-secretase activity. Upon cleavage by alpha secretases, APP releases its extracellular domain - a fragment known as APPsα - into the extracellular environment in a process known as ectodomain shedding.

<span class="mw-page-title-main">Low-density lipoprotein receptor-related protein 8</span> Cell surface receptor, part of the low-density lipoprotein receptor family

Low-density lipoprotein receptor-related protein 8 (LRP8), also known as apolipoprotein E receptor 2 (ApoER2), is a protein that in humans is encoded by the LRP8 gene. ApoER2 is a cell surface receptor that is part of the low-density lipoprotein receptor family. These receptors function in signal transduction and endocytosis of specific ligands. Through interactions with one of its ligands, reelin, ApoER2 plays an important role in embryonic neuronal migration and postnatal long-term potentiation. Another LDL family receptor, VLDLR, also interacts with reelin, and together these two receptors influence brain development and function. Decreased expression of ApoER2 is associated with certain neurological diseases.

<span class="mw-page-title-main">Presenilin-1</span> Protein-coding gene in the species Homo sapiens

Presenilin-1(PS-1) is a presenilin protein that in humans is encoded by the PSEN1 gene. Presenilin-1 is one of the four core proteins in the gamma secretase complex, which is considered to play an important role in generation of amyloid beta (Aβ) from amyloid-beta precursor protein (APP). Accumulation of amyloid beta is associated with the onset of Alzheimer's disease.

<span class="mw-page-title-main">APLP2</span> Protein-coding gene in the species Homo sapiens

Amyloid precursor like protein 2, also known as APLP2, is a protein encoded by the APLP2 gene in humans. APLP2 along with APLP1 are important modulators of glucose and insulin homeostasis.

<span class="mw-page-title-main">Presenilin-2</span> Protein-coding gene in the species Homo sapiens

Presenilin-2 is a protein that is encoded by the PSEN2 gene.

<span class="mw-page-title-main">APBB1</span> Protein-coding gene in the species Homo sapiens

Amyloid beta A4 precursor protein-binding family B member 1 is a protein that in humans is encoded by the APBB1 gene.

<span class="mw-page-title-main">APBA1</span> Protein-coding gene in the species Homo sapiens

Amyloid beta A4 precursor protein-binding family A member 1 is a protein that in humans is encoded by the APBA1 gene.

<span class="mw-page-title-main">APBA2</span> Protein-coding gene in the species Homo sapiens

Amyloid beta A4 precursor protein-binding family A member 2 is a protein that in humans is encoded by the APBA2 gene.

<span class="mw-page-title-main">CLSTN1</span> Protein-coding gene in humans

Calsyntenin-1 is a protein that in humans is encoded by the CLSTN1 gene.

<span class="mw-page-title-main">APBB2</span> Protein-coding gene in the species Homo sapiens

Amyloid beta A4 precursor protein-binding family B member 2 is a protein that in humans is encoded by the APBB2 gene.

<span class="mw-page-title-main">APBB3</span> Protein-coding gene in the species Homo sapiens

Amyloid beta A4 precursor protein-binding family B member 3 is a protein that in humans is encoded by the APBB3 gene.

Early-onset Alzheimer's disease (EOAD), also called younger-onset Alzheimer's disease (YOAD), is Alzheimer's disease diagnosed before the age of 65. It is an uncommon form of Alzheimer's, accounting for only 5–10% of all Alzheimer's cases. About 60% have a positive family history of Alzheimer's and 13% of them are inherited in an autosomal dominant manner. Most cases of early-onset Alzheimer's share the same traits as the "late-onset" form and are not caused by known genetic mutations. Little is understood about how it starts.

<span class="mw-page-title-main">Protein pigeon homolog</span> Protein-coding gene in the species Homo sapiens

Protein pigeon homolog also known as gamma-secretase activating protein (GSAP) is a protein that in humans is encoded by the PION gene.

<span class="mw-page-title-main">Rudolph E. Tanzi</span> American geneticist

Rudolph Emile 'Rudy' Tanzi a professor of Neurology at Harvard University, vice-chair of neurology, director of the Genetics and Aging Research Unit, and co-director of the Henry and Allison McCance Center for Brain Health at Massachusetts General Hospital (MGH).

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000105290 Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000006651 Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. 1 2 "Entrez Gene: APLP1 amyloid beta (A4) precursor-like protein 1".
  6. Wasco W, Brook JD, Tanzi RE (January 1993). "The amyloid precursor-like protein (APLP) gene maps to the long arm of human chromosome 19". Genomics. 15 (1): 237–9. doi:10.1006/geno.1993.1047. PMID   8432545.
  7. 1 2 Needham BE, Wlodek ME, Ciccotosto GD, Fam BC, Masters CL, Proietto J, et al. (June 2008). "Identification of the Alzheimer's disease amyloid precursor protein (APP) and its homologue APLP2 as essential modulators of glucose and insulin homeostasis and growth". J. Pathol. 215 (2): 155–63. doi:10.1002/path.2343. PMID   18393365. S2CID   1064378.
  8. Mao X, Gu H, Kim D, Kimura Y, Wang N, Xu E, et al. (May 2024). "Aplp1 interacts with Lag3 to facilitate transmission of pathologic α-synuclein". Nature Communications. 15 (1): 4663. doi:10.1038/s41467-024-49016-3. PMC   11143359 . PMID   38821932.
  9. "New Study Suggests Cancer Drug Could Be Used to Target Protein Connection That Spurs Parkinson's Disease". Johns Hopkins Medicine. 17 June 2024.

Further reading