ARHGAP29

Last updated
ARHGAP29
Identifiers
Aliases ARHGAP29 , PARG1, Rho GTPase activating protein 29
External IDs OMIM: 610496 MGI: 2443818 HomoloGene: 3539 GeneCards: ARHGAP29
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_004815
NM_001328664
NM_001328665
NM_001328666
NM_001328667

Contents

NM_172525
NM_001356524

RefSeq (protein)

NP_001315593
NP_001315594
NP_001315595
NP_001315596
NP_004806

NP_766113
NP_001343453

Location (UCSC) Chr 1: 94.15 – 94.28 Mb Chr 3: 121.75 – 121.81 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

ARHGAP29 is a gene located on chromosome 1p22 that encodes Rho GTPase activating protein (GAP) 29, [5] a protein that mediates the cyclical regulation of small GTP binding proteins such as RhoA. [6]

Function

ARHGAP29 is expressed in the developing face and may act downstream of IRF6 in craniofacial development. [7]

Structure

ARHGAP29 contains four domains including a coiled-coil region known to interact with Rap2, [8] a C1 domain, the Rho GTPase domain, and a small C-terminal region that interacts with PTPL1. [6]

Clinical significance

The 1p22 locus containing ARHGAP29 was associated with nonsyndromic cleft lip/palate by genome wide association [9] and meta-analysis. [10] A follow-up study [7] identified rare coding variants including a nonsense and a frameshift variant in patients with nonsyndromic cleft lip/palate. The finding of ARHGAP29's role in craniofacial development was discovered after the adjacent ABCA4 gene lacked functional or expression data to support it as the etiologic gene for nonsyndromic cleft lip/palate even though SNPs in the ABCA4 gene were associated with cleft lip/palate.

Related Research Articles

<span class="mw-page-title-main">IRF6</span> Protein-coding gene in the species Homo sapiens

Interferon regulatory factor 6 also known as IRF6 is a protein that in humans is encoded by the IRF6 gene.

<span class="mw-page-title-main">BCR (gene)</span>

The breakpoint cluster region protein (BCR) also known as renal carcinoma antigen NY-REN-26 is a protein that in humans is encoded by the BCR gene. BCR is one of the two genes in the BCR-ABL fusion protein, which is associated with the Philadelphia chromosome. Two transcript variants encoding different isoforms have been found for this gene.

<span class="mw-page-title-main">Fibroblast growth factor receptor 2</span> Protein-coding gene in the species Homo sapiens

Fibroblast growth factor receptor 2 (FGFR2) also known as CD332 is a protein that in humans is encoded by the FGFR2 gene residing on chromosome 10. FGFR2 is a receptor for fibroblast growth factor.

<span class="mw-page-title-main">Related to receptor tyrosine kinase</span> Protein-coding gene in the species Homo sapiens

The related to receptor tyrosine kinase (RYK) gene encodes the protein Ryk.

<span class="mw-page-title-main">PTCH1</span> Protein-coding gene in the species Homo sapiens

Protein patched homolog 1 is a protein that is the member of the patched family and in humans is encoded by the PTCH1 gene.

<span class="mw-page-title-main">ABCA4</span> Mammalian protein found in Homo sapiens

ATP-binding cassette, sub-family A (ABC1), member 4, also known as ABCA4 or ABCR, is a protein which in humans is encoded by the ABCA4 gene.

<span class="mw-page-title-main">PTPN13</span> Protein-coding gene in the species Homo sapiens

Tyrosine-protein phosphatase non-receptor type 13 is an enzyme that in humans is encoded by the PTPN13 gene.

<span class="mw-page-title-main">ARHGEF7</span> Protein-coding gene in the species Homo sapiens

Rho guanine nucleotide exchange factor 7 is a protein that in humans is encoded by the ARHGEF7 gene.

<i>MAFB</i> (gene) Protein-coding gene in the species Homo sapiens

Transcription factor MafB also known as V-maf musculoaponeurotic fibrosarcoma oncogene homolog B is a protein that in humans is encoded by the MAFB gene. This gene maps to chromosome 20q11.2-q13.1, consists of a single exon and spans around 3 kb.

<span class="mw-page-title-main">PTPRU</span> Protein-coding gene in the species Homo sapiens

Receptor-type tyrosine-protein phosphatase PCP-2, is an enzyme that in humans is encoded by the PTPRU gene.

<span class="mw-page-title-main">ARHGAP5</span> Protein-coding gene in the species Homo sapiens

Rho GTPase-activating protein 5 is an enzyme that in humans is encoded by the ARHGAP5 gene.

<span class="mw-page-title-main">PDGFC</span> Protein-coding gene in the species Homo sapiens

Platelet-derived growth factor C, also known as PDGF-C, is a 345-amino acid protein that in humans is encoded by the PDGFC gene. Platelet-derived growth factors are important in connective tissue growth, survival and function, and consist of disulphide-linked dimers involving two polypeptide chains, PDGF-A and PDGF-B. PDGF-C is a member of the PDGF/VEGF family of growth factors with a unique two-domain structure and expression pattern. PDGF-C was not previously identified with PDGF-A and PDGF-B, possibly because it may be that it is synthesized and secreted as a latent growth factor, requiring proteolytic removal of the N-terminal CUB domain for receptor binding and activation.

<span class="mw-page-title-main">FOXE1</span> Mammalian protein found in Homo sapiens

Forkhead box protein E1 is a protein that in humans is encoded by the FOXE1 gene.

<span class="mw-page-title-main">TFAP2A</span> Protein-coding gene in the species Homo sapiens

Transcription factor AP-2 alpha, also known as TFAP2A, is a protein that in humans is encoded by the TFAP2A gene.

<span class="mw-page-title-main">PTPRT</span> Protein-coding gene in the species Homo sapiens

Receptor-type tyrosine-protein phosphatase T is an enzyme that in humans is encoded by the PTPRT gene.

<span class="mw-page-title-main">TBX22</span> Protein-coding gene in the species Homo sapiens

T-box transcription factor TBX22 is a protein that in humans is encoded by the TBX22 gene.

<span class="mw-page-title-main">CENTG3</span> Protein-coding gene in the species Homo sapiens

Arf-GAP with GTPase, ANK repeat and PH domain-containing protein 3 is an enzyme that in humans is encoded by the AGAP3 gene.

<span class="mw-page-title-main">CENTD3</span> Protein-coding gene in the species Homo sapiens

Arf-GAP with Rho-GAP domain, ANK repeat and PH domain-containing protein 3 is a protein that in humans is encoded by the ARAP3 gene.

<span class="mw-page-title-main">VAX1</span> Protein-coding gene in the species Homo sapiens

Ventral anterior homeobox 1 is a protein that in humans is encoded by the VAX1 gene.

<span class="mw-page-title-main">SATB2</span> Protein-coding gene in the species Homo sapiens

Special AT-rich sequence-binding protein 2 (SATB2) also known as DNA-binding protein SATB2 is a protein that in humans is encoded by the SATB2 gene. SATB2 is a DNA-binding protein that specifically binds nuclear matrix attachment regions and is involved in transcriptional regulation and chromatin remodeling. SATB2 shows a restricted mode of expression and is expressed in certain cell nuclei. The SATB2 protein is mainly expressed in the epithelial cells of the colon and rectum, followed by the nuclei of neurons in the brain.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000137962 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000039831 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Heasman SJ, Ridley AJ (September 2008). "Mammalian Rho GTPases: new insights into their functions from in vivo studies". Nature Reviews. Molecular Cell Biology. 9 (9): 690–701. doi:10.1038/nrm2476. PMID   18719708. S2CID   16205866.
  6. 1 2 Saras J, Franzén P, Aspenström P, Hellman U, Gonez LJ, Heldin CH (September 1997). "A novel GTPase-activating protein for Rho interacts with a PDZ domain of the protein-tyrosine phosphatase PTPL1". The Journal of Biological Chemistry. 272 (39): 24333–24338. doi: 10.1074/jbc.272.39.24333 . PMID   9305890.
  7. 1 2 Leslie EJ, Mansilla MA, Biggs LC, Schuette K, Bullard S, Cooper M, et al. (November 2012). "Expression and mutation analyses implicate ARHGAP29 as the etiologic gene for the cleft lip with or without cleft palate locus identified by genome-wide association on chromosome 1p22". Birth Defects Research. Part A, Clinical and Molecular Teratology. 94 (11): 934–942. doi:10.1002/bdra.23076. PMC   3501616 . PMID   23008150.
  8. Myagmar BE, Umikawa M, Asato T, Taira K, Oshiro M, Hino A, et al. (April 2005). "PARG1, a protein-tyrosine phosphatase-associated RhoGAP, as a putative Rap2 effector". Biochemical and Biophysical Research Communications. 329 (3): 1046–1052. doi:10.1016/j.bbrc.2005.02.069. PMID   15752761.
  9. Beaty TH, Murray JC, Marazita ML, Munger RG, Ruczinski I, Hetmanski JB, et al. (June 2010). "A genome-wide association study of cleft lip with and without cleft palate identifies risk variants near MAFB and ABCA4". Nature Genetics. 42 (6): 525–529. doi:10.1038/ng.580. PMC   2941216 . PMID   20436469.
  10. Ludwig KU, Mangold E, Herms S, Nowak S, Reutter H, Paul A, et al. (September 2012). "Genome-wide meta-analyses of nonsyndromic cleft lip with or without cleft palate identify six new risk loci". Nature Genetics. 44 (9): 968–971. doi:10.1038/ng.2360. PMC   3598617 . PMID   22863734.