ARHGDIB

Last updated
ARHGDIB
Protein ARHGDIB PDB 1ds6.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases ARHGDIB , D4, GDIA2, GDID4, LYGDI, Ly-GDI, RAP1GN1, RhoGDI2, Rho GDP dissociation inhibitor beta
External IDs OMIM: 602843 MGI: 101940 HomoloGene: 20318 GeneCards: ARHGDIB
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001175
NM_001321420
NM_001321421
NM_001321422
NM_001321423

Contents

RefSeq (protein)

NP_001166
NP_001308349
NP_001308350
NP_001308351
NP_001308352

Location (UCSC) Chr 12: 14.94 – 14.96 Mb Chr 6: 136.9 – 136.92 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Rho GDP-dissociation inhibitor 2 is a protein that in humans is encoded by the ARHGDIB gene. [5] [6] [7] Aliases of this gene include RhoGDI2, GDID4, Rho GDI 2, and others. [8]

Interactions

ARHGDIB has been shown to interact with VAV1 [9] and Src. [10]

Gene family

RhoGDI2 (ARHGDIB) is part of a family of three members: RhoGDI1, RhoGDI2 (also known as RhoGDIB, D4-GDI or Ly-GDI) and RhoGDI3. RhoGDI1 is expressed in many organs and is the best studied member of the family. [11] [12] [13] RhoGDI2 was initially believed to be expressed specifically in blood forming cells, [6] but has subsequently been found to be highly expressed in a variety of other cell types as well. [14] RhoGDI3 is predominantly expressed in brain, lung, kidney, testis and pancreas, [15] [16] and is targeted to specific parts of the cell such as the Golgi where it may play a role in transport or proteins in cells. [17] [18]

Disease involvement

Despite a high degree of sequence similarity, RhoGDI1 and RhoGDI2 are very different in their binding affinities for specific GTPases, [19] and more importantly, in their roles in tumor formation and spread of tumor to other organs (the process of metastasis). [20] For example, RhoGDI2 functions as a suppressor of metastasis but not a tumor suppressor in bladder cancer cells, [14] [21] while RhoGDI1 is a ubiquitous suppressor of tumor growth in all sites so far examined in bladder cancer models), [22] suggesting that their cellular functions must diverge to cause these differential effects.

While there are clear links between the alteration of RhoGDI2 protein levels and disease progression and/or metastasis in several types of cancer, the mechanistic underpinnings of the mode of RhoGDI2 action under carcinogenic cellular conditions are only now beginning to be understood. Evidence demonstrates that RhoGDI2 inhibits the endothelin axis and crosstalk with macrophages within the micrometastatic microenvironment to inhibit metastatic outgrowth. [23] As such, RhoGDI2 could prove important in the regulation of tumor dormancy. Targeting this axis with orally available endothelin receptor antagonists [24] may prove efficacious in mimicking the inhibitory role of RhoGDI2 by preventing macrophage infiltration into the micrometastatic niche. [25] Recent work has also determined that genetic and pharmacologic targeting of chemokine (C-C motif) ligand 2 (CCL2) also known as monocyte chemotactic protein-1 (MCP-1) or small inducible cytokine A2, its receptor CCR2 and pharmacologic ablation of macrophages can also phenocopy the effect of RhoGDI2 expression to prevent metastatic colonization of the lung67 and that RhoGDI2 is suppressor of versican, a protein that has been shown to promote cell migration [26] and metastasis in several tumor models.

In contrast to its role as a metastasis suppressor in bladder cancer, in breast, RhoGDI2 expression has been reported to be upregulated in cancer [27] and to promote invasion of breast cancer cells, [28] while another report found a biphasic expression pattern of RhoGDI2 in breast cancer with decreased expression correlating with lymph node metastasis. [29]

ARHGDIB antibodies may be a marker for long-term kidney graft loss in recipients of deceased-donor kidneys. [30]

Related Research Articles

GTPases are a large family of hydrolase enzymes that bind to the nucleotide guanosine triphosphate (GTP) and hydrolyze it to guanosine diphosphate (GDP). The GTP binding and hydrolysis takes place in the highly conserved P-loop "G domain", a protein domain common to many GTPases.

Small GTPases, also known as small G-proteins, are a family of hydrolase enzymes that can bind and hydrolyze guanosine triphosphate (GTP). They are a type of G-protein found in the cytosol that are homologous to the alpha subunit of heterotrimeric G-proteins, but unlike the alpha subunit of G proteins, a small GTPase can function independently as a hydrolase enzyme to bind to and hydrolyze a guanosine triphosphate (GTP) to form guanosine diphosphate (GDP). The best-known members are the Ras GTPases and hence they are sometimes called Ras subfamily GTPases.

The Rab family of proteins is a member of the Ras superfamily of small G proteins. Approximately 70 types of Rabs have now been identified in humans. Rab proteins generally possess a GTPase fold, which consists of a six-stranded beta sheet which is flanked by five alpha helices. Rab GTPases regulate many steps of membrane trafficking, including vesicle formation, vesicle movement along actin and tubulin networks, and membrane fusion. These processes make up the route through which cell surface proteins are trafficked from the Golgi to the plasma membrane and are recycled. Surface protein recycling returns proteins to the surface whose function involves carrying another protein or substance inside the cell, such as the transferrin receptor, or serves as a means of regulating the number of a certain type of protein molecules on the surface.

<span class="mw-page-title-main">Guanine nucleotide exchange factor</span> Proteins which remove GDP from GTPases

Guanine nucleotide exchange factors (GEFs) are proteins or protein domains that activate monomeric GTPases by stimulating the release of guanosine diphosphate (GDP) to allow binding of guanosine triphosphate (GTP). A variety of unrelated structural domains have been shown to exhibit guanine nucleotide exchange activity. Some GEFs can activate multiple GTPases while others are specific to a single GTPase.

<span class="mw-page-title-main">Guanosine nucleotide dissociation inhibitor</span>

In molecular biology, the Guanosine dissociation inhibitors (GDIs) constitute a family of small GTPases that serve a regulatory role in vesicular membrane traffic. GDIs bind to the GDP-bound form of Rho and Rab small GTPases and not only prevent exchange, but also prevent the small GTPase from localizing at the membrane, which is their place of action. This inhibition can be removed by the action of a GDI displacement factor. GDIs also inhibit cdc42 by binding to its tail and preventing its insertion into membranes; hence it cannot trigger WASPs and cannot lead to nucleation of F-actin.

The Rho family of GTPases is a family of small signaling G proteins, and is a subfamily of the Ras superfamily. The members of the Rho GTPase family have been shown to regulate many aspects of intracellular actin dynamics, and are found in all eukaryotic kingdoms, including yeasts and some plants. Three members of the family have been studied in detail: Cdc42, Rac1, and RhoA. All G proteins are "molecular switches", and Rho proteins play a role in organelle development, cytoskeletal dynamics, cell movement, and other common cellular functions.

<span class="mw-page-title-main">CDC42</span> Protein-coding gene in the species Homo sapiens

Cell division control protein 42 homolog is a protein that in humans is encoded by the CDC42 gene. Cdc42 is involved in regulation of the cell cycle. It was originally identified in S. cerevisiae (yeast) as a mediator of cell division, and is now known to influence a variety of signaling events and cellular processes in a variety of organisms from yeast to mammals.

<span class="mw-page-title-main">RHOB</span> Protein-coding gene in the species Homo sapiens

Ras homolog gene family, member B, also known as RHOB, is a protein which in humans is encoded by the RHOB gene.

<span class="mw-page-title-main">Transforming protein RhoA</span> Protein and coding gene in humans

Transforming protein RhoA, also known as Ras homolog family member A (RhoA), is a small GTPase protein in the Rho family of GTPases that in humans is encoded by the RHOA gene. While the effects of RhoA activity are not all well known, it is primarily associated with cytoskeleton regulation, mostly actin stress fibers formation and actomyosin contractility. It acts upon several effectors. Among them, ROCK1 and DIAPH1 are the best described. RhoA, and the other Rho GTPases, are part of a larger family of related proteins known as the Ras superfamily, a family of proteins involved in the regulation and timing of cell division. RhoA is one of the oldest Rho GTPases, with homologues present in the genomes since 1.5 billion years. As a consequence, RhoA is somehow involved in many cellular processes which emerged throughout evolution. RhoA specifically is regarded as a prominent regulatory factor in other functions such as the regulation of cytoskeletal dynamics, transcription, cell cycle progression and cell transformation.

<span class="mw-page-title-main">GDI1</span> Protein-coding gene in humans

Rab GDP dissociation inhibitor alpha is a protein that in humans is encoded by the GDI1 gene.

<span class="mw-page-title-main">RAC2</span> Protein-coding gene in the species Homo sapiens

Rac2 is a small signaling G protein, and is a member of the Rac subfamily of the family Rho family of GTPases. It is encoded by the gene RAC2.

<span class="mw-page-title-main">RhoC</span> Protein-coding gene in the species Homo sapiens

RhoC is a small signaling G protein, and is a member of the Rac subfamily of the family Rho family of GTPases. It is encoded by the gene RHOC.

<span class="mw-page-title-main">ARHGDIA</span> Protein-coding gene in the species Homo sapiens

Rho GDP-dissociation inhibitor 1 is a protein that in humans is encoded by the ARHGDIA gene.

<span class="mw-page-title-main">DLC1</span> Protein-coding gene in the species Homo sapiens

Deleted in Liver Cancer 1 also known as DLC1 and StAR-related lipid transfer protein 12 (STARD12) is a protein which in humans is encoded by the DLC1 gene.

<span class="mw-page-title-main">RhoG</span> Protein-coding gene in the species Homo sapiens

RhoG is a small monomeric GTP-binding protein, and is an important component of many intracellular signalling pathways. It is a member of the Rac subfamily of the Rho family of small G proteins and is encoded by the gene RHOG.

<span class="mw-page-title-main">GDI2</span> Protein-coding gene in the species Homo sapiens

Rab GDP dissociation inhibitor beta is a protein that in humans is encoded by the GDI2 gene.

<span class="mw-page-title-main">RALB</span> Protein-coding gene in the species Homo sapiens

Ras-related protein Ral-B (RalB) is a protein that in humans is encoded by the RALB gene on chromosome 2. This protein is one of two paralogs of the Ral protein, the other being RalA, and part of the Ras GTPase family. RalA functions as a molecular switch to activate a number of biological processes, majorly cell division and transport, via signaling pathways. Its biological role thus implicates it in many cancers.

A metastasis suppressor is a protein that acts to slow or prevent metastases from spreading in the body of an organism with cancer. Metastasis is one of the most lethal cancer processes. This process is responsible for about ninety percent of human cancer deaths. Proteins that act to slow or prevent metastases are different from those that act to suppress tumor growth. Genes for about a dozen such proteins are known in humans and other animals.

<span class="mw-page-title-main">ARHGDIG</span> Protein-coding gene in the species Homo sapiens

Rho GDP-dissociation inhibitor 3 is a protein that in humans is encoded by the ARHGDIG gene.

<span class="mw-page-title-main">Dan Theodorescu</span>

Dan Theodorescu is an American physician and academic. He is the Director of the Samuel Oschin Comprehensive Cancer Institute at the Cedars-Sinai Medical Center and leader of Cedars-Sinai CANCER. From 2010 until 2018, Theodorescu was Director of the University of Colorado Cancer Center and a professor of Surgery-Urology. He has been appointed Paul Mellon Chair at the University of Virginia and Paul Bunn Chair and Distinguished University Professor at the University of Colorado.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000111348 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000030220 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Lelias JM, Adra CN, Wulf GM, Guillemot JC, Khagad M, Caput D, Lim B (March 1993). "cDNA cloning of a human mRNA preferentially expressed in hematopoietic cells and with homology to a GDP-dissociation inhibitor for the rho GTP-binding proteins". Proc Natl Acad Sci U S A. 90 (4): 1479–83. Bibcode:1993PNAS...90.1479L. doi: 10.1073/pnas.90.4.1479 . PMC   45897 . PMID   8434008.
  6. 1 2 Scherle P, Behrens T, Staudt LM (September 1993). "Ly-GDI, a GDP-dissociation inhibitor of the RhoA GTP-binding protein, is expressed preferentially in lymphocytes". Proc Natl Acad Sci U S A. 90 (16): 7568–72. Bibcode:1993PNAS...90.7568S. doi: 10.1073/pnas.90.16.7568 . PMC   47183 . PMID   8356058.
  7. "Entrez Gene: ARHGDIB Rho GDP dissociation inhibitor (GDI) beta".
  8. "Gene Cards: ARHGDIB".
  9. Groysman M, Russek CS, Katzav S (February 2000). "Vav, a GDP/GTP nucleotide exchange factor, interacts with GDIs, proteins that inhibit GDP/GTP dissociation". FEBS Lett. 467 (1): 75–80. doi: 10.1016/S0014-5793(00)01121-2 . PMID   10664460. S2CID   40103095.
  10. Wu Y, Moissoglu K, Wang H, Wang X, Frierson HF, Schwartz MA, Theodorescu D (April 2009). "Src phosphorylation of RhoGDI2 regulates its metastasis suppressor function". Proc. Natl. Acad. Sci. U.S.A. 106 (14): 5807–12. Bibcode:2009PNAS..106.5807W. doi: 10.1073/pnas.0810094106 . PMC   2667073 . PMID   19321744.
  11. DerMardirossian C, Bokoch GM (July 2005). "GDIs: central regulatory molecules in Rho GTPase activation". Trends Cell Biol. 15 (7): 356–63. doi:10.1016/j.tcb.2005.05.001. PMID   15921909. S2CID   12222421.
  12. Dovas A, Couchman JR (August 2005). "RhoGDI: multiple functions in the regulation of Rho family GTPase activities". Biochem. J. 390 (Pt 1): 1–9. doi:10.1042/BJ20050104. PMC   1184558 . PMID   16083425.
  13. Garcia-Mata R, Boulter E, Burridge K (August 2011). "The 'invisible hand': regulation of RHO GTPases by RHOGDIs". Nat. Rev. Mol. Cell Biol. 12 (8): 493–504. doi:10.1038/nrm3153. PMC   3260518 . PMID   21779026.
  14. 1 2 Theodorescu D, Sapinoso LM, Conaway MR, Oxford G, Hampton GM, Frierson HF (June 2004). "Reduced expression of metastasis suppressor RhoGDI2 is associated with decreased survival for patients with bladder cancer". Clin. Cancer Res. 10 (11): 3800–6. doi: 10.1158/1078-0432.CCR-03-0653 . PMID   15173088.
  15. Adra CN, Manor D, Ko JL, Zhu S, Horiuchi T, Van Aelst L, Cerione RA, Lim B (April 1997). "RhoGDIgamma: a GDP-dissociation inhibitor for Rho proteins with preferential expression in brain and pancreas". Proc. Natl. Acad. Sci. U.S.A. 94 (9): 4279–84. Bibcode:1997PNAS...94.4279A. doi: 10.1073/pnas.94.9.4279 . PMC   20713 . PMID   9113980.
  16. Zalcman G, Closson V, Camonis J, Honoré N, Rousseau-Merck MF, Tavitian A, Olofsson B (November 1996). "RhoGDI-3 is a new GDP dissociation inhibitor (GDI). Identification of a non-cytosolic GDI protein interacting with the small GTP-binding proteins RhoB and RhoG". J. Biol. Chem. 271 (48): 30366–74. doi: 10.1074/jbc.271.48.30366 . PMID   8939998.
  17. Brunet N, Morin A, Olofsson B (May 2002). "RhoGDI-3 regulates RhoG and targets this protein to the Golgi complex through its unique N-terminal domain". Traffic. 3 (5): 342–57. doi: 10.1034/j.1600-0854.2002.30504.x . PMID   11967128. S2CID   19351109.
  18. Dransart E, Morin A, Cherfils J, Olofsson B (February 2005). "Uncoupling of inhibitory and shuttling functions of rho GDP dissociation inhibitors". J. Biol. Chem. 280 (6): 4674–83. doi: 10.1074/jbc.M409741200 . PMID   15513926.
  19. Gorvel JP, Chang TC, Boretto J, Azuma T, Chavrier P (January 1998). "Differential properties of D4/LyGDI versus RhoGDI: phosphorylation and rho GTPase selectivity". FEBS Lett. 422 (2): 269–73. doi:10.1016/S0014-5793(98)00020-9. PMID   9490022. S2CID   10817327.
  20. Harding MA, Theodorescu D (May 2010). "RhoGDI signaling provides targets for cancer therapy". Eur. J. Cancer. 46 (7): 1252–9. doi:10.1016/j.ejca.2010.02.025. PMID   20347589.
  21. Gildea JJ, Seraj MJ, Oxford G, Harding MA, Hampton GM, Moskaluk CA, Frierson HF, Conaway MR, Theodorescu D (November 2002). "RhoGDI2 is an invasion and metastasis suppressor gene in human cancer". Cancer Res. 62 (22): 6418–23. PMID   12438227.
  22. Moissoglu K, McRoberts KS, Meier JA, Theodorescu D, Schwartz MA (April 2009). "Rho GDP dissociation inhibitor 2 suppresses metastasis via unconventional regulation of RhoGTPases". Cancer Res. 69 (7): 2838–44. doi:10.1158/0008-5472.CAN-08-1397. PMC   2701105 . PMID   19276387.
  23. Said N, Smith S, Sanchez-Carbayo M, Theodorescu D (January 2011). "Tumor endothelin-1 enhances metastatic colonization of the lung in mouse xenograft models of bladder cancer". J. Clin. Invest. 121 (1): 132–47. doi:10.1172/JCI42912. PMC   3007145 . PMID   21183790.
  24. Nelson J, Bagnato A, Battistini B, Nisen P (February 2003). "The endothelin axis: emerging role in cancer". Nat. Rev. Cancer. 3 (2): 110–6. doi:10.1038/nrc990. PMID   12563310. S2CID   22954469.
  25. Said N, Sanchez-Carbayo M, Smith SC, Theodorescu D (April 2012). "RhoGDI2 suppresses lung metastasis in mice by reducing tumor versican expression and macrophage infiltration". J. Clin. Invest. 122 (4): 1503–18. doi:10.1172/JCI61392. PMC   3314474 . PMID   22406535.
  26. Wu Y, Siadaty MS, Berens ME, Hampton GM, Theodorescu D (November 2008). "Overlapping gene expression profiles of cell migration and tumor invasion in human bladder cancer identify metallothionein 1E and nicotinamide N-methyltransferase as novel regulators of cell migration". Oncogene. 27 (52): 6679–89. doi:10.1038/onc.2008.264. PMC   5373842 . PMID   18724390.
  27. Moon HG, Jeong SH, Ju YT, Jeong CY, Lee JS, Lee YJ, Hong SC, Choi SK, Ha WS, Park ST, Jung EJ (September 2010). "Up-regulation of RhoGDI2 in human breast cancer and its prognostic implications". Cancer Res Treat. 42 (3): 151–6. doi:10.4143/crt.2010.42.3.151. PMC   2953778 . PMID   20948920.
  28. Zhang Y, Zhang B (June 2006). "D4-GDI, a Rho GTPase regulator, promotes breast cancer cell invasiveness". Cancer Res. 66 (11): 5592–8. doi:10.1158/0008-5472.CAN-05-4004. PMID   16740694.
  29. Hu LD, Zou HF, Zhan SX, Cao KM (June 2007). "Biphasic expression of RhoGDI2 in the progression of breast cancer and its negative relation with lymph node metastasis". Oncol. Rep. 17 (6): 1383–9. doi: 10.3892/or.17.6.1383 . PMID   17487395.
  30. Kamburova, EG; Gruijters, ML; Kardol-Hoefnagel, T; Wisse, BW; Joosten, I; Allebes, WA; van der Meer, A; Hilbrands, LB; Baas, MC; Spierings, E; Hack, CE; van Reekum, FE; van Zuilen, AD; Verhaar, MC; Bots, ML; Drop, ACAD; Plaisier, L; Melchers, RCA; Seelen, MAJ; Sanders, JS; Hepkema, BG; Lambeck, AJA; Bungener, LB; Roozendaal, C; Tilanus, MGJ; Voorter, CE; Wieten, L; van Duijnhoven, EM; Gelens, MACJ; Christiaans, MHL; van Ittersum, FJ; Nurmohamed, SA; Lardy, NM; Swelsen, W; van der Pant, KAMI; van der Weerd, NC; Ten Berge, IJM; Hoitsma, A; van der Boog, PJM; de Fijter, JW; Betjes, MGH; Heidt, S; Roelen, DL; Claas, FH; Bemelman, FJ; Otten, HG (13 June 2019). "Antibodies against ARHGDIB are associated with long-term kidney graft loss". American Journal of Transplantation. 19 (12): 3335–3344. doi:10.1111/ajt.15493. PMC   6899679 . PMID   31194283.

Further reading