Abstraction in mathematics is the process of extracting the underlying structures, patterns or properties of a mathematical concept, removing any dependence on real world objects with which it might originally have been connected, and generalizing it so that it has wider applications or matching among other abstract descriptions of equivalent phenomena. [1] [2] [3] In other words, to be abstract is to remove context and application. [4] Two of the most highly abstract areas of modern mathematics are category theory and model theory.
Many areas of mathematics began with the study of real world problems, before the underlying rules and concepts were identified and defined as abstract structures. For example, geometry has its origins in the calculation of distances and areas in the real world, and algebra started with methods of solving problems in arithmetic.
Abstraction is an ongoing process in mathematics and the historical development of many mathematical topics exhibits a progression from the concrete to the abstract. For example, the first steps in the abstraction of geometry were historically made by the ancient Greeks, with Euclid's Elements being the earliest extant documentation of the axioms of plane geometry—though Proclus tells of an earlier axiomatisation by Hippocrates of Chios. [5] In the 17th century, Descartes introduced Cartesian co-ordinates which allowed the development of analytic geometry. Further steps in abstraction were taken by Lobachevsky, Bolyai, Riemann and Gauss, who generalised the concepts of geometry to develop non-Euclidean geometries. Later in the 19th century, mathematicians generalised geometry even further, developing such areas as geometry in n dimensions, projective geometry, affine geometry and finite geometry. Finally Felix Klein's "Erlangen program" identified the underlying theme of all of these geometries, defining each of them as the study of properties invariant under a given group of symmetries. This level of abstraction revealed connections between geometry and abstract algebra. [6]
In mathematics, abstraction can be advantageous in the following ways:
On the other hand, abstraction can also be disadvantageous in that highly abstract concepts can be difficult to learn. [7] A degree of mathematical maturity and experience may be needed for conceptual assimilation of abstractions.
Bertrand Russell, in The Scientific Outlook (1931), writes that "Ordinary language is totally unsuited for expressing what physics really asserts, since the words of everyday life are not sufficiently abstract. Only mathematics and mathematical logic can say as little as the physicist means to say." [8]
An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word ἀξίωμα (axíōma), meaning 'that which is thought worthy or fit' or 'that which commends itself as evident'.
Abstraction is a process where general rules and concepts are derived from the use and classifying of specific examples, literal signifiers, first principles, or other methods.
Category theory is a general theory of mathematical structures and their relations. It was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Category theory is used in almost all areas of mathematics. In particular, many constructions of new mathematical objects from previous ones that appear similarly in several contexts are conveniently expressed and unified in terms of categories. Examples include quotient spaces, direct products, completion, and duality.
Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry, Elements. Euclid's approach consists in assuming a small set of intuitively appealing axioms (postulates) and deducing many other propositions (theorems) from these. Although many of Euclid's results had been stated earlier, Euclid was the first to organize these propositions into a logical system in which each result is proved from axioms and previously proved theorems.
Mathematics is a field of study that discovers and organizes methods, theories and theorems that are developed and proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory, algebra, geometry, analysis, and set theory.
Mathematical logic is the study of formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory. Research in mathematical logic commonly addresses the mathematical properties of formal systems of logic such as their expressive or deductive power. However, it can also include uses of logic to characterize correct mathematical reasoning or to establish foundations of mathematics.
Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory — as a branch of mathematics — is mostly concerned with those that are relevant to mathematics as a whole.
Philosophy of mathematics is the branch of philosophy that deals with the nature of mathematics and its relationship with other human activities.
Alfred Tarski was a Polish-American logician and mathematician. A prolific author best known for his work on model theory, metamathematics, and algebraic logic, he also contributed to abstract algebra, topology, geometry, measure theory, mathematical logic, set theory, and analytic philosophy.
Foundations of mathematics are the logical and mathematical framework that allows the development of mathematics without generating self-contradictory theories, and, in particular, to have reliable concepts of theorems, proofs, algorithms, etc. This may also include the philosophical study of the relation of this framework with reality.
In mathematics and logic, an axiomatic system is any set of primitive notions and axioms to logically derive theorems. A theory is a consistent, relatively-self-contained body of knowledge which usually contains an axiomatic system and all its derived theorems. An axiomatic system that is completely described is a special kind of formal system. A formal theory is an axiomatic system that describes a set of sentences that is closed under logical implication. A formal proof is a complete rendition of a mathematical proof within a formal system.
This article gives some very general background to the mathematical idea of topos. This is an aspect of category theory, and has a reputation for being abstruse. The level of abstraction involved cannot be reduced beyond a certain point; but on the other hand context can be given. This is partly in terms of historical development, but also to some extent an explanation of differing attitudes to category theory.
Discrete geometry and combinatorial geometry are branches of geometry that study combinatorial properties and constructive methods of discrete geometric objects. Most questions in discrete geometry involve finite or discrete sets of basic geometric objects, such as points, lines, planes, circles, spheres, polygons, and so forth. The subject focuses on the combinatorial properties of these objects, such as how they intersect one another, or how they may be arranged to cover a larger object.
Pure mathematics is the study of mathematical concepts independently of any application outside mathematics. These concepts may originate in real-world concerns, and the results obtained may later turn out to be useful for practical applications, but pure mathematicians are not primarily motivated by such applications. Instead, the appeal is attributed to the intellectual challenge and aesthetic beauty of working out the logical consequences of basic principles.
The history of mathematical notation includes the commencement, progress, and cultural diffusion of mathematical symbols and the conflict of the methods of notation confronted in a notation's move to popularity or inconspicuousness. Mathematical notation comprises the symbols used to write mathematical equations and formulas. Notation generally implies a set of well-defined representations of quantities and symbols operators. The history includes Hindu–Arabic numerals, letters from the Roman, Greek, Hebrew, and German alphabets, and a host of symbols invented by mathematicians over the past several centuries.
Algebra is the branch of mathematics that studies certain abstract systems, known as algebraic structures, and the manipulation of statements within those systems. It is a generalization of arithmetic that introduces variables and algebraic operations other than the standard arithmetic operations such as addition and multiplication.
A mathematical object is an abstract concept arising in mathematics. Typically, a mathematical object can be a value that can be assigned to a variable, and therefore can be involved in formulas. Commonly encountered mathematical objects include numbers, sets, functions, expressions, geometric objects, transformations of other mathematical objects, and spaces. Mathematical objects can be very complex; for example, theorems, proofs, and even theories are considered as mathematical objects in proof theory.
Mathematics has no generally accepted definition. Different schools of thought, particularly in philosophy, have put forth radically different definitions. All are controversial.
Mathematics is a broad subject that is commonly divided in many areas that may be defined by their objects of study, by the used methods, or by both. For example, analytic number theory is a subarea of number theory devoted to the use of methods of analysis for the study of natural numbers.
Mathematicism is 'the effort to employ the formal structure and rigorous method of mathematics as a model for the conduct of philosophy', or the epistemological view that reality is fundamentally mathematical. The term has been applied to a number of philosophers, including Pythagoras and René Descartes although the term was not used by themselves.