Acyl-CoA-binding protein

Last updated
ACBP
2cb8.jpg
Acyl-CoA-binding protein monomer, Human
Identifiers
SymbolACBP
Pfam PF00887
InterPro IPR000582
PROSITE PDOC00686
SCOP2 1aca / SCOPe / SUPFAM
OPM superfamily 295
OPM protein 2wh5
CDD cd00435
Membranome 497

In molecular biology, the Acyl-CoA-binding protein (ACBP) is a small (10 Kd) protein that binds medium- and long-chain acyl-CoA esters with very high affinity and may function as an intracellular carrier of acyl-CoA esters. [1] ACBP is also known as diazepam binding inhibitor (DBI) or endozepine (EP) because of its ability to displace diazepam from the benzodiazepine (BZD) recognition site located on the GABA type A receptor. It is therefore possible that this protein also acts as a neuropeptide to modulate the action of the GABA receptor. [2]

ACBP is a highly conserved protein of about 90 amino acids that is found in all four eukaryotic kingdoms, Animalia, Plantae, Fungi and Protista, and in some eubacterial species. [3]

Although ACBP occurs as a completely independent protein, intact ACB domains have been identified in a number of large, multifunctional proteins in a variety of eukaryotic species. These include large membrane-associated proteins with N-terminal ACB domains, multifunctional enzymes with both ACB and peroxisomal enoyl-CoA Delta(3), Delta(2)-enoyl-CoA isomerase domains, and proteins with both an ACB domain and ankyrin repeats. [3]

The ACB domain consists of four alpha-helices arranged in a bowl shape with a highly exposed acyl-CoA-binding site. The ligand is bound through specific interactions with residues on the protein, most notably several conserved positive charges that interact with the phosphate group on the adenosine-3'phosphate moiety, and the acyl chain is sandwiched between the hydrophobic surfaces of CoA and the protein. [4]

Other proteins containing an ACB domain include:

Related Research Articles

Protein disulfide-isomerase

Protein disulfide isomerase, or PDI, is an enzyme in the endoplasmic reticulum (ER) in eukaryotes and the periplasm of bacteria that catalyzes the formation and breakage of disulfide bonds between cysteine residues within proteins as they fold. This allows proteins to quickly find the correct arrangement of disulfide bonds in their fully folded state, and therefore the enzyme acts to catalyze protein folding.

Hsp90 Heat shock proteins with a molecular mass around 90kDa

Hsp90 is a chaperone protein that assists other proteins to fold properly, stabilizes proteins against heat stress, and aids in protein degradation. It also stabilizes a number of proteins required for tumor growth, which is why Hsp90 inhibitors are investigated as anti-cancer drugs.

Enoyl CoA isomerase

Enoyl-CoA-(∆) isomerase, also known as dodecenoyl-CoA-(∆) isomerase, 3,2-trans-enoyl-CoA isomerase, ∆3(cis),∆2(trans)-enoyl-CoA isomerase, or acetylene-allene isomerase, is an enzyme that catalyzes the conversion of cis- or trans-double bonds of coenzyme A (CoA) bound fatty acids at gamma-carbon to trans double bonds at beta-carbon as below:

DD-transpeptidase

DD-transpeptidase is a bacterial enzyme that catalyzes the transfer of the R-L-aca-D-alanyl moiety of R-L-aca-D-alanyl-D-alanine carbonyl donors to the γ-OH of their active-site serine and from this to a final acceptor. It is involved in bacterial cell wall biosynthesis, namely, the transpeptidation that crosslinks the peptide side chains of peptidoglycan strands.

EF-Tu Prokaryotic elongation factor

EF-Tu is a prokaryotic elongation factor responsible for catalyzing the binding of an aminoacyl-tRNA (aa-tRNA) to the ribosome. It is a G-protein, and facilitates the selection and binding of an aa-tRNA to the A-site of the ribosome. As a reflection of its crucial role in translation, EF-Tu is one of the most abundant and highly conserved proteins in prokaryotes. It is found in eukaryotic mitochrondria as TUFM.

Enoyl-acyl carrier protein reductase

Enoyl-acyl carrier protein reductase, is a key enzyme of the type II fatty acid synthesis (FAS) system. ENR is an attractive target for narrow-spectrum antibacterial drug discovery because of its essential role in metabolism and its sequence conservation across many bacterial species. In addition, the bacterial ENR sequence and structural organization are distinctly different from those of mammalian fatty acid biosynthesis enzymes.

Long-chain-fatty-acid—CoA ligase

The long chain fatty acyl-CoA ligase is an enzyme of the ligase family that activates the oxidation of complex fatty acids. Long chain fatty acyl-CoA synthetase catalyzes the formation of fatty acyl-CoA by a two-step process proceeding through an adenylated intermediate. The enzyme catalyzes the following reaction,

Beta-ketoacyl-ACP synthase

In molecular biology, Beta-ketoacyl-ACP synthase EC 2.3.1.41, is an enzyme involved in fatty acid synthesis. It typically uses malonyl-CoA as a carbon source to elongate ACP-bound acyl species, resulting in the formation of ACP-bound β-ketoacyl species such as acetoacetyl-ACP.

D-Bifunctional protein deficiency is an autosomal recessive peroxisomal fatty acid oxidation disorder. Peroxisomal disorders are usually caused by a combination of peroxisomal assembly defects or by deficiencies of specific peroxisomal enzymes. The peroxisome is an organelle in the cell similar to the lysosome that functions to detoxify the cell. Peroxisomes contain many different enzymes, such as catalase, and their main function is to neutralize free radicals and detoxify drugs. For this reason peroxisomes are ubiquitous in the liver and kidney. D-BP deficiency is the most severe peroxisomal disorder, often resembling Zellweger syndrome.

The crotonase family comprises mechanistically diverse proteins that share a conserved trimeric quaternary structure, the core of which consists of 4 turns of a (beta/beta/alpha)n superhelix.

In enzymology, a trans-2-decenoyl-[acyl-carrier protein] isomerase is an enzyme that catalyzes the chemical reaction

Diazepam binding inhibitor

Acyl-CoA-binding protein in humans belongs to the family of Acyl-CoA-binding proteins.

P4HB

Protein disulfide-isomerase, also known as the beta-subunit of prolyl 4-hydroxylase (P4HB), is an enzyme that in humans encoded by the P4HB gene. The human P4HB gene is localized in chromosome 17q25. Unlike other prolyl 4-hydroxylase family proteins, this protein is multifunctional and acts as an oxidoreductase for disulfide formation, breakage, and isomerization. The activity of P4HB is tightly regulated. Both dimer dissociation and substrate binding are likely to enhance its enzymatic activity during the catalysis process.

HSD17B4

D-bifunctional protein (DBP), also known as peroxisomal multifunctional enzyme type 2 (MFP-2), as well as 17β-hydroxysteroid dehydrogenase type IV is a protein that in humans is encoded by the HSD17B4 gene. It's an alcohol oxidoreductase, specifically 17β-Hydroxysteroid dehydrogenase. It is involved in fatty acid β-oxidation and steroid metabolism.

PECI (gene)

Peroxisomal 3,2-trans-enoyl-CoA isomerase is an enzyme that in humans is encoded by the PECI gene.

ECHS1

Enoyl Coenzyme A hydratase, short chain, 1, mitochondrial, also known as ECHS1, is a human gene.

TPI1

Triosephosphate isomerase is an enzyme that in humans is encoded by the TPI1 gene.

Short linear motif

In molecular biology short linear motifs (SLiMs), linear motifs or minimotifs are short stretches of protein sequence that mediate protein–protein interaction.

Chaperone DnaJ

In molecular biology, chaperone DnaJ, also known as Hsp40, is a molecular chaperone protein. It is expressed in a wide variety of organisms from bacteria to humans.

Ketoacyl synthase

Ketoacyl synthases (KSs) catalyze the condensation reaction of acyl-CoA or acyl-acyl ACP with malonyl-CoA to form 3-ketoacyl-CoA or with malonyl-ACP to form 3-ketoacyl-ACP. This reaction is a key step in the fatty acid synthesis cycle, as the resulting acyl chain is two carbon atoms longer than before. KSs exist as individual enzymes, as they do in type II fatty acid synthesis and type II polyketide synthesis, or as domains in large multidomain enzymes, such as type I fatty acid synthases (FASs) and polyketide synthases (PKSs). KSs are divided into five families: KS1, KS2, KS3, KS4, and KS5.

References

  1. Rose TM, Schultz ER, Todaro GJ (December 1992). "Molecular cloning of the gene for the yeast homolog (ACB) of diazepam binding inhibitor/endozepine/acyl-CoA-binding protein". Proc. Natl. Acad. Sci. U.S.A. 89 (23): 11287–91. doi: 10.1073/pnas.89.23.11287 . PMC   50535 . PMID   1454809.
  2. Costa E, Guidotti A (1991). "Diazepam binding inhibitor (DBI): a peptide with multiple biological actions". Life Sci. 49 (5): 325–44. doi:10.1016/0024-3205(91)90440-M. PMID   1649940.
  3. 1 2 Burton M, Rose TM, Faergeman NJ, Knudsen J (December 2005). "Evolution of the acyl-CoA binding protein (ACBP)". Biochem. J. 392 (Pt 2): 299–307. doi:10.1042/BJ20050664. PMC   1316265 . PMID   16018771.
  4. van Aalten DM, Milne KG, Zou JY, Kleywegt GJ, Bergfors T, Ferguson MA, Knudsen J, Jones TA (May 2001). "Binding site differences revealed by crystal structures of Plasmodium falciparum and bovine acyl-CoA binding protein". J. Mol. Biol. 309 (1): 181–92. doi:10.1006/jmbi.2001.4749. PMID   11491287.
  5. Pusch W, Balvers M, Hunt N, Ivell R (August 1996). "A novel endozepine-like peptide (ELP) is exclusively expressed in male germ cells". Mol. Cell. Endocrinol. 122 (1): 69–80. doi:10.1016/0303-7207(96)03874-9. PMID   8898349. S2CID   36504570.
  6. Suk K, Kim YH, Hwang DY, Ihm SH, Yoo HJ, Lee MS (May 1999). "Molecular cloning and expression of a novel human cDNA related to the diazepam binding inhibitor". Biochim. Biophys. Acta. 1454 (1): 126–31. doi: 10.1016/s0925-4439(99)00033-2 . PMID   10354522.
This article incorporates text from the public domain Pfam and InterPro: IPR000582