Adenosine thiamine triphosphate

Last updated
Adenosine thiamine triphosphate
Adenosine thiamine triphosphate.png
Names
Systematic IUPAC name
(22R,23R,24S,25R)-16,134-Diamino-23,24,5,7,9-pentahydroxy-134,152-dimethyl-5,7,9-trioxo-4,6,8,10-tetraoxa-5λ5,7λ5,9λ5-triphospha-133λ5-1(9)-purina-15(5)-pyrimidina-13(5,3)-[1,3]thiazola-2(2,5)-oxolanapentadecaphan-133-ylium
Other names
P1,P3-(Adenosine-5′-thiamine) triphosphate
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
MeSH adenosine+thiamine+triphosphate
PubChem CID
UNII
  • InChI=1S/C22H30N9O13P3S/c1-11-15(48-10-30(11)6-13-5-25-12(2)29-19(13)23)3-4-40-45(34,35)43-47(38,39)44-46(36,37)41-7-14-17(32)18(33)22(42-14)31-9-28-16-20(24)26-8-27-21(16)31/h5,8-10,14,17-18,22,32-33H,3-4,6-7H2,1-2H3,(H6-,23,24,25,26,27,29,34,35,36,37,38,39)/p+1/t14-,17-,18-,22-/m1/s1 Yes check.svgY
    Key: FGOYXNBJKMNPDH-SAJUPQAESA-O Yes check.svgY
  • InChI=1/C22H30N9O13P3S/c1-11-15(48-10-30(11)6-13-5-25-12(2)29-19(13)23)3-4-40-45(34,35)43-47(38,39)44-46(36,37)41-7-14-17(32)18(33)22(42-14)31-9-28-16-20(24)26-8-27-21(16)31/h5,8-10,14,17-18,22,32-33H,3-4,6-7H2,1-2H3,(H6-,23,24,25,26,27,29,34,35,36,37,38,39)/p+1/t14-,17-,18-,22-/m1/s1
    Key: FGOYXNBJKMNPDH-YLNAWJOLBZ
  • NC1=NC=NC2=C1N=CN2[C@H]3[C@H](O)[C@H](O)[C@@H](COP(OP(OP(OCCC4=C(C)[N+](CC5=CN=C(C)N=C5N)=CS4)(O)=O)(O)=O)(O)=O)O3
  • O=P(O)(OC[C@H]3O[C@@H](n1c2ncnc(N)c2nc1)[C@H](O)[C@@H]3O)OP(=O)(O)OP(=O)(O)OCCc4sc[n+](c4C)Cc5c(nc(nc5)C)N
Properties
C22H31N9O13P3S
Molar mass 754.52 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Adenosine thiamine triphosphate (AThTP), or thiaminylated adenosine triphosphate, is a natural thiamine adenine nucleotide. [1] It was discovered in Escherichia coli where it may account for up to 15 - 20% of total thiamine under carbon starvation. AThTP also exists in eukaryotic organisms such as yeast, roots of higher plants and animal tissues, albeit at a much lower concentration. It was found to exist in small amounts in the muscle, heart, brain, kidneys and liver of mice. [2]

Contents

In E. coli AThTP is synthesized from thiamine diphosphate (ThDP) according to the following reaction catalyzed by thiamine diphosphate adenylyl transferase: [3]

ThDP + ATP (ADP) ↔ AThTP + PPi (Pi)

Structure and function

The molecule is made up of thiamine and adenosine joined together with phosphate groups. It is similar in structure to NAD+. The function of AThTP is not currently known but it has been shown to inhibit the activity of PARP-1. [2]

Related Research Articles

<span class="mw-page-title-main">Adenosine triphosphate</span> Energy-carrying molecule in living cells

Adenosine triphosphate (ATP) is a nucleotide that provides energy to drive and support many processes in living cells, such as muscle contraction, nerve impulse propagation, condensate dissolution, and chemical synthesis. Found in all known forms of life, ATP is often referred to as the "molecular unit of currency" of intracellular energy transfer. When consumed in metabolic processes, it converts either to adenosine diphosphate (ADP) or to adenosine monophosphate (AMP). Other processes regenerate ATP. It is also a precursor to DNA and RNA, and is used as a coenzyme. A human adult processes around 50 kg of ATP daily.

<span class="mw-page-title-main">Nucleotide</span> Biological molecules that form the building blocks of nucleic acids

Nucleotides are organic molecules composed of a nitrogenous base, a pentose sugar and a phosphate. They serve as monomeric units of the nucleic acid polymers – deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), both of which are essential biomolecules within all life-forms on Earth. Nucleotides are obtained in the diet and are also synthesized from common nutrients by the liver.

<span class="mw-page-title-main">Thiamine</span> Chemical compound

Thiamine, also known as thiamin and vitamin B1, is a vitamin, an essential micronutrient for humans and animals. It is found in food and commercially synthesized to be a dietary supplement or medication. Phosphorylated forms of thiamine are required for some metabolic reactions, including the breakdown of glucose and amino acids.

<span class="mw-page-title-main">Adenine</span> Chemical compound in DNA and RNA

Adenine is a purine nucleobase. It is one of the four nucleobases in the nucleic acids of DNA, the other three being guanine (G), cytosine (C), and thymine (T). Adenine derivatives have various roles in biochemistry including cellular respiration, in the form of both the energy-rich adenosine triphosphate (ATP) and the cofactors nicotinamide adenine dinucleotide (NAD), flavin adenine dinucleotide (FAD) and Coenzyme A. It also has functions in protein synthesis and as a chemical component of DNA and RNA. The shape of adenine is complementary to either thymine in DNA or uracil in RNA.

<span class="mw-page-title-main">Pyrophosphate</span> Class of chemical compounds

In chemistry, pyrophosphates are phosphorus oxyanions that contain two phosphorus atoms in a P–O–P linkage. A number of pyrophosphate salts exist, such as disodium pyrophosphate (Na2H2P2O7) and tetrasodium pyrophosphate (Na4P2O7), among others. Often pyrophosphates are called diphosphates. The parent pyrophosphates are derived from partial or complete neutralization of pyrophosphoric acid. The pyrophosphate bond is also sometimes referred to as a phosphoanhydride bond, a naming convention which emphasizes the loss of water that occurs when two phosphates form a new P–O–P bond, and which mirrors the nomenclature for anhydrides of carboxylic acids. Pyrophosphates are found in ATP and other nucleotide triphosphates, which are important in biochemistry. The term pyrophosphate is also the name of esters formed by the condensation of a phosphorylated biological compound with inorganic phosphate, as for dimethylallyl pyrophosphate. This bond is also referred to as a high-energy phosphate bond.

<span class="mw-page-title-main">Nicotinamide adenine dinucleotide</span> Chemical compound which is reduced and oxidized

Nicotinamide adenine dinucleotide (NAD) is a coenzyme central to metabolism. Found in all living cells, NAD is called a dinucleotide because it consists of two nucleotides joined through their phosphate groups. One nucleotide contains an adenine nucleobase and the other, nicotinamide. NAD exists in two forms: an oxidized and reduced form, abbreviated as NAD+ and NADH (H for hydrogen), respectively.

A nucleoside triphosphate is a nucleoside containing a nitrogenous base bound to a 5-carbon sugar, with three phosphate groups bound to the sugar. They are the molecular precursors of both DNA and RNA, which are chains of nucleotides made through the processes of DNA replication and transcription. Nucleoside triphosphates also serve as a source of energy for cellular reactions and are involved in signalling pathways.

<span class="mw-page-title-main">Adenylate kinase</span> Class of enzymes

Adenylate kinase is a phosphotransferase enzyme that catalyzes the interconversion of the various adenosine phosphates. By constantly monitoring phosphate nucleotide levels inside the cell, ADK plays an important role in cellular energy homeostasis.

<span class="mw-page-title-main">Thiamine triphosphate</span> Chemical compound

Thiamine triphosphate (ThTP) is a biomolecule found in most organisms including bacteria, fungi, plants and animals. Chemically, it is the triphosphate derivative of the vitamin thiamine.

<span class="mw-page-title-main">Adenosine 3',5'-bisphosphate</span> Chemical compound

Adenosine 3',5'-bisphosphate is a form of an adenosine nucleotide with two phosphate groups attached to different carbons in the ribose ring. This is distinct from adenosine diphosphate, where the two phosphate groups are attached in a chain to the 5' carbon atom in the ring.

<span class="mw-page-title-main">ATP phosphoribosyltransferase</span> Class of enzymes

In enzymology, an ATP phosphoribosyltransferase is an enzyme that catalyzes the chemical reaction

In enzymology, a FMN adenylyltransferase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Glucose-1-phosphate adenylyltransferase</span>

In enzymology, a glucose-1-phosphate adenylyltransferase is an enzyme that catalyzes the chemical reaction

In enzymology, a [glutamate—ammonia-ligase] adenylyltransferase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Nicotinamide-nucleotide adenylyltransferase</span>

In enzymology, nicotinamide-nucleotide adenylyltransferase (NMNAT) (EC 2.7.7.1) are enzymes that catalyzes the chemical reaction

In enzymology, a nucleoside-triphosphate-adenylate kinase is an enzyme that catalyzes the chemical reaction

In enzymology, a sulfate adenylyltransferase (ADP) (EC 2.7.7.5) is an enzyme that catalyzes the chemical reaction

In enzymology, a thiamine-diphosphate kinase is an enzyme involved in thiamine metabolism. It catalyzes the chemical reaction

<span class="mw-page-title-main">Adenosine thiamine diphosphate</span> Chemical compound

Adenosine thiamine diphosphate (AThDP), or thiaminylated adenosine diphosphate (ADP) is a naturally occurring thiamine adenine nucleotide. It was chemically synthesized and exists in small amounts in vertebrate liver. Its biological significance remains unknown.

<span class="mw-page-title-main">Regrelor</span> Chemical compound

Regrelor is an experimental antiplatelet drug that was under investigation by Merck Sharp and Dohme in human clinical trials. Although it was initially found to be well tolerated in healthy subjects, safety concerns led to cessation of clinical trials.

References

  1. Bettendorff L, Wirtzfeld B, Makarchikov AF, et al. (2007). "Discovery of a natural thiamine adenine nucleotide". Nat. Chem. Biol. 3 (4): 211–2. doi:10.1038/nchembio867. hdl: 2268/518 . PMID   17334376. S2CID   28498198.
  2. 1 2 Tanaka T, Yamamoto D, Sato T, Tanaka S, Usui K, Manabe M, Aoki Y, Iwashima Y, Saito Y, Mino Y, Deguchi H (2011). "Adenosine thiamine triphosphate (AThTP) inhibits poly(ADP-ribose) polymerase-1(PARP-1) activity". J Nutr Sci Vitaminol (Tokyo). 57 (2): 192–6. doi: 10.3177/jnsv.57.192 . PMID   21697640.
  3. Makarchikov AF, Brans A, Bettendorff L (2007). "Thiamine diphosphate adenylyl transferase from E. coli: functional characterization of the enzyme synthesizing adenosine thiamine triphosphate". BMC Biochem. 8: 17. doi: 10.1186/1471-2091-8-17 . PMC   1976097 . PMID   17705845.