Afghanite

Last updated
Afghanite
Afghanite (Afghanistan) 1.jpg
General
Category Tectosilicates
Formula
(repeating unit)
(Na,K)22Ca10[Si24Al24O96](SO4)6Cl6
IMA symbol Afg [1]
Strunz classification 9.FB.05
Crystal system Trigonal
Crystal class Ditrigonal pyramidal (3m)
H-M symbol: (3m)
Space group P31c [2]
Unit cell a = 12.796, c = 21.409 [Å]; Z = 1
Identification
Colorlight blue, dark blue
Crystal habit Lath shaped crystals, rounded grains
Cleavage Perfect {1010}
Fracture Conchoidal
Mohs scale hardness5.5–6
Luster Vitreous
Streak white
Diaphaneity Transparent
Specific gravity 2.55–2.65
Optical propertiesUniaxial (+)
Refractive index nω = 1.523 nε = 1.529
Birefringence δ = 0.006
Other characteristics Radioactive.svg Radioactive 2.28% (K)
References [3] [4] [5] [6]

Afghanite, (Na,K)22Ca10[Si24Al24O96](SO4)6Cl6, [2] is a hydrous sodium, calcium, potassium, sulfate, chloride, carbonate alumino-silicate mineral. Afghanite is a feldspathoid of the cancrinite group and typically occurs with sodalite group minerals. It forms blue to colorless, typically massive crystals in the trigonal crystal system. The lowering of the symmetry from typical (for cancrinite group) hexagonal one is due to ordering of Si and Al. [2] It has a Mohs hardness of 5.5 to 6 and a specific gravity of 2.55 to 2.65. It has refractive index values of nω = 1.523 and nε = 1.529. It has one direction of perfect cleavage and exhibits conchoidal fracture. [4] It fluoresces a bright orange.

Afghanite Afghanite, pyrite, calcite.jpg
Afghanite

It was discovered in 1968 in the Lapis-lazuli Mine, Sar-e-Sang, Badakhshan Province, Afghanistan and takes its name from that country. It has also been described from localities in Germany, Italy, the Pamir Mountains of Tajikistan, near Lake Baikal in Siberia, New York and Newfoundland. It occurs as veinlets in lazurite crystals in the Afghan location and in altered limestone xenoliths within pumice in Pitigliano, Tuscany, Italy. [3]

It is used as a gemstone. [7]

See also

Related Research Articles

<span class="mw-page-title-main">Amblygonite</span>

Amblygonite is a fluorophosphate mineral, (Li,Na)AlPO4(F,OH), composed of lithium, sodium, aluminium, phosphate, fluoride and hydroxide. The mineral occurs in pegmatite deposits and is easily mistaken for albite and other feldspars. Its density, cleavage and flame test for lithium are diagnostic. Amblygonite forms a series with montebrasite, the low fluorine endmember. Geologic occurrence is in granite pegmatites, high-temperature tin veins, and greisens. Amblygonite occurs with spodumene, apatite, lepidolite, tourmaline, and other lithium-bearing minerals in pegmatite veins. It contains about 10% lithium, and has been utilized as a source of lithium. The chief commercial sources have historically been the deposits of California and France.

<span class="mw-page-title-main">Beryl</span> Gemstone: beryllium aluminium silicate

Beryl ( BERR-əl) is a mineral composed of beryllium aluminium silicate with the chemical formula Be3Al2Si6O18. Well-known varieties of beryl include emerald and aquamarine. Naturally occurring, hexagonal crystals of beryl can be up to several meters in size, but terminated crystals are relatively rare. Pure beryl is colorless, but it is frequently tinted by impurities; possible colors are green, blue, yellow, pink, and red (the rarest). It is an ore source of beryllium.

<span class="mw-page-title-main">Quartz</span> Mineral made of silicon and oxygen

Quartz is a hard, crystalline mineral composed of silica (silicon dioxide). The atoms are linked in a continuous framework of SiO4 silicon–oxygen tetrahedra, with each oxygen being shared between two tetrahedra, giving an overall chemical formula of SiO2. Quartz is the second most abundant mineral in Earth's continental crust, behind feldspar.

<span class="mw-page-title-main">Spinel</span> Mineral or gemstone

Spinel is the magnesium/aluminium member of the larger spinel group of minerals. It has the formula MgAl
2
O
4
in the cubic crystal system. Its name comes from the Latin word spinella, a diminutive form of spine, in reference to its pointed crystals.

<span class="mw-page-title-main">Titanite</span> Nesosilicate mineral

Titanite, or sphene (from Ancient Greek σφηνώ (sphēnṓ) 'wedge'), is a calcium titanium nesosilicate mineral, CaTiSiO5. Trace impurities of iron and aluminium are typically present. Also commonly present are rare earth metals including cerium and yttrium; calcium may be partly replaced by thorium.

<span class="mw-page-title-main">Tourmaline</span> Cyclosilicate mineral group

Tourmaline is a crystalline silicate mineral group in which boron is compounded with elements such as aluminium, iron, magnesium, sodium, lithium, or potassium. This gemstone comes in a wide variety of colors.

<span class="mw-page-title-main">Garnet</span> Mineral, semi-precious stone

Garnets are a group of silicate minerals that have been used since the Bronze Age as gemstones and abrasives.

<span class="mw-page-title-main">Spodumene</span> Pyroxene, inosilicate mineral rich in lithium

Spodumene is a pyroxene mineral consisting of lithium aluminium inosilicate, LiAl(SiO3)2, and is a commercially important source of lithium. It occurs as colorless to yellowish, purplish, or lilac kunzite (see below), yellowish-green or emerald-green hiddenite, prismatic crystals, often of great size. Single crystals of 14.3 m (47 ft) in size are reported from the Black Hills of South Dakota, United States.

<span class="mw-page-title-main">Sodalite</span> Blue tectosilicate mineral

Sodalite is a tectosilicate mineral with the formula Na
8
(Al
6
Si
6
O
24
)Cl
2
, with royal blue varieties widely used as an ornamental gemstone. Although massive sodalite samples are opaque, crystals are usually transparent to translucent. Sodalite is a member of the sodalite group with hauyne, nosean, lazurite and tugtupite.

<span class="mw-page-title-main">Cuprite</span>

Cuprite is an oxide mineral composed of copper(I) oxide Cu2O, and is a minor ore of copper.

<span class="mw-page-title-main">Benitoite</span> Barium titanium cyclosilicate mineral

Benitoite is a rare blue barium titanium cyclosilicate mineral, found in hydrothermally altered serpentinite. It forms in low temperature, high pressure environments typical of subduction zones at convergent plate boundaries. Benitoite fluoresces under short wave ultraviolet light, appearing bright blue to bluish white in color. The more rarely seen clear to white benitoite crystals fluoresce red under long-wave UV light.

<span class="mw-page-title-main">Cordierite</span> Mg, Fe, Al cyclosilicate mineral

Cordierite (mineralogy) or iolite (gemology) is a magnesium iron aluminium cyclosilicate. Iron is almost always present and a solid solution exists between Mg-rich cordierite and Fe-rich sekaninaite with a series formula: (Mg,Fe)2Al3(Si5AlO18) to (Fe,Mg)2Al3(Si5AlO18). A high-temperature polymorph exists, indialite, which is isostructural with beryl and has a random distribution of Al in the (Si,Al)6O18 rings.

<span class="mw-page-title-main">Spessartine</span> Nesosilicate, manganese aluminium garnet species

Spessartine is a nesosilicate, manganese aluminium garnet species, Mn2+3Al2(SiO4)3. This mineral is sometimes mistakenly referred to as spessartite.

<span class="mw-page-title-main">Andradite</span> Nesosilicate mineral species of garnet

Andradite is a mineral species of the garnet group. It is a nesosilicate, with formula Ca3Fe2Si3O12.

<span class="mw-page-title-main">Hauyne</span> Tectosilicate mineral with sometimes a blue colour due to a cyclic trisulfide anion

Hauyne or haüyne, also called hauynite or haüynite, is a tectosilicate sulfate mineral with endmember formula Na3Ca(Si3Al3)O12(SO4). As much as 5 wt % K2O may be present, and also H2O and Cl. It is a feldspathoid and a member of the sodalite group. Hauyne was first described in 1807 from samples discovered in Vesuvian lavas in Monte Somma, Italy, and was named in 1807 by Brunn-Neergard for the French crystallographer René Just Haüy (1743–1822). It is sometimes used as a gemstone.

<span class="mw-page-title-main">Vishnevite</span>

Vishnevite, or sulfatic cancrinite, is a mineral of the cancrinite group with the chemical formula (Na, Ca, K)6(Si, Al)12O24[(SO4),(CO3), Cl2]2-4·nH2O. It has hexagonal crystals.

Bystrite is a silicate mineral with the formula (Na,K)7Ca(Si6Al6)O24S4.5•(H2O), and a member of the cancrinite mineral group. It is a hexagonal crystal, with a 3m point group. The mineral may have been named after the Malaya Bystraya deposits in Russia, where it was found.

Farneseite is a mineral from the cancrinite sodalite group with 14 layer stacking. It is a complex silicate mineral with formula (Na,Ca,K)56(Al6Si6O24)7(SO4)12·6H2O. It was named after a location in Farnese, Lazio, Italy. It is a member of the cancrinite-sodalite group, approved in 2004 as a new mineral species. The group is characterized by the number of stacking layers making up each member, with farneseite being one of newest minerals in the group with a 14 layer stacking structure. It is a clear transparent mineral and has a hexagonal crystal system with crystal class of 6/m and space group of P63/m. The specimens discovered in Farnese were in a pyroclastic rock from the Làtera Cauldera region.

Alloriite is a silicate mineral that belongs to the cancrinite group, or more specifically the feldspathoid group. It is currently only found in Italy. It was discovered by and named for the Italian mineralogist Roberto Allori, an avid mineral collector who has also done research on piergorite and willhendersonite. The mineral appears as a crystal that is approximately 1.5 by 2mm in length. The crystal grows as both tabular and prismatic crystals, and commonly occurs with sanidine, biotite, andradite, and apatite. It was approved of being a mineral in 2006 by the International Mineralogical Association. Afghanite is a cancrinite group mineral that is very similar to alloriite in both its chemical composition and its physical properties.

Balliranoite ((Na,K)6Ca2(Si6Al6O24)Cl2(CO)3) is a mineral that was discovered at Monte Somma – Vesuvio volcanic complex, Campania, Italy. This mineral is named in honor of Paolo Ballirano (b. 1964), Italian crystallographer and professor in the Department of Earth Sciences, University of Rome ‘‘La Sapienza’’, who has made important contributions to the crystal chemistry of cancrinite-group minerals.

References

  1. Warr, L.N. (2021). "IMA–CNMNC approved mineral symbols". Mineralogical Magazine. 85 (3): 291–320. Bibcode:2021MinM...85..291W. doi: 10.1180/mgm.2021.43 . S2CID   235729616.
  2. 1 2 3 Ballirano, Paolo; Bonaccorsi, Elena; Maras, Adriana; Merlino, Stefanο (1996). "Crystal structure of afghanite, the eight-layer member of the cancrinite-group: Evidence for long-range Si,Al ordering". European Journal of Mineralogy. 9 (1): 21–30. Bibcode:1996EJMin...9...21B. doi:10.1127/ejm/9/1/0021.
  3. 1 2 Mineral Data Publishing 2001
  4. 1 2 Mindat with location data
  5. Webmineral data
  6. "Radioactive Gems : ClassicGems.net".
  7. Tables of Gemstone Identification, By Roger Dedeyne, Ivo Quintens, p.112