Alexander V. Markov

Last updated
Alexander Vladimirovich Markov
Vsenauka-2020 zamyslov 081.jpg
Markov in 2020
BornOctober 24, 1965 (1965-10-24) (age 57)
Russia, Soviet Union
Education Doctor of Science,
Professor
Alma mater Moscow State University (1987)
Scientific career
Fields Paleontology
Institutions Moscow State University

Alexander V. Markov (born October 24, 1965) is a Russian biologist, paleontologist, popularizer of science. Prize winner (2011) of the main Russian prize for popular science ("Prosvetitel").

Markov graduated from the Moscow State University (Faculty of Biology) in 1987. He has been working in the Paleontological Institute of the Russian Academy of Sciences since 1987. Doctor of biological sciences, Senior Research Professor of the Paleontological Institute, RAS. Professor of the RAS.

During the Phanerozoic the biodiversity shows a steady but not monotonic increase from near zero to several thousands of genera. Phanerozoic Biodiversity.svg
During the Phanerozoic the biodiversity shows a steady but not monotonic increase from near zero to several thousands of genera.

In collaboration with Andrey Korotayev he has demonstrated that a rather simple mathematical model can be developed to describe in a rather accurate way the macrotrends of biological evolution. They have shown that changes in biodiversity through the Phanerozoic correlate much better with hyperbolic model (widely used in demography and macrosociology) than with exponential and logistic models (traditionally used in population biology and extensively applied to fossil biodiversity as well). The latter models imply that changes in diversity are guided by a first-order positive feedback (more ancestors, more descendants) and/or a negative feedback arising from resource limitation. Hyperbolic model implies a second-order positive feedback. The hyperbolic pattern of the world population growth has been demonstrated by Korotayev to arise from a second-order positive feedback between the population size and the rate of technological growth. According to Markov and Korotayev, the hyperbolic character of biodiversity growth can be similarly accounted for by a feedback between the diversity and community structure complexity. They suggest that the similarity between the curves of biodiversity and human population probably comes from the fact that both are derived from the interference of the hyperbolic trend with cyclical and stochastic dynamics. [1] [2]

Related Research Articles

<span class="mw-page-title-main">Outline of biology</span> Outline of subdisciplines within biology

Biology – The natural science that studies life. Areas of focus include structure, function, growth, origin, evolution, distribution, and taxonomy.

<span class="mw-page-title-main">Extinction event</span> Widespread and rapid decrease in the biodiversity on Earth

An extinction event is a widespread and rapid decrease in the biodiversity on Earth. Such an event is identified by a sharp change in the diversity and abundance of multicellular organisms. It occurs when the rate of extinction increases with respect to the background extinction rate and the rate of speciation. Estimates of the number of major mass extinctions in the last 540 million years range from as few as five to more than twenty. These differences stem from disagreement as to what constitutes a "major" extinction event, and the data chosen to measure past diversity.

<span class="mw-page-title-main">Phanerozoic</span> Fourth and current eon of the geological timescale

The Phanerozoic Eon is the current geologic eon in the geologic time scale, and the one during which abundant animal and plant life has existed. It covers 538.8 million years to the present, and it began with the Cambrian Period, when animals first developed hard shells preserved in the fossil record. The time before the Phanerozoic, called the Precambrian, is now divided into the Hadean, Archaean and Proterozoic eons.

<span class="mw-page-title-main">Theoretical ecology</span>

Theoretical ecology is the scientific discipline devoted to the study of ecological systems using theoretical methods such as simple conceptual models, mathematical models, computational simulations, and advanced data analysis. Effective models improve understanding of the natural world by revealing how the dynamics of species populations are often based on fundamental biological conditions and processes. Further, the field aims to unify a diverse range of empirical observations by assuming that common, mechanistic processes generate observable phenomena across species and ecological environments. Based on biologically realistic assumptions, theoretical ecologists are able to uncover novel, non-intuitive insights about natural processes. Theoretical results are often verified by empirical and observational studies, revealing the power of theoretical methods in both predicting and understanding the noisy, diverse biological world.

<span class="mw-page-title-main">Biodiversity</span> Variety and variability of life forms

Biodiversity or biological diversity is the variety and variability of life on Earth. Biodiversity is a measure of variation at the genetic, species, and ecosystem level.

<span class="mw-page-title-main">Positive feedback</span> Destabilising process that occurs in a feedback loop

Positive feedback is a process that occurs in a feedback loop which exacerbates the effects of a small disturbance. That is, the effects of a perturbation on a system include an increase in the magnitude of the perturbation. That is, A produces more of B which in turn produces more of A. In contrast, a system in which the results of a change act to reduce or counteract it has negative feedback. Both concepts play an important role in science and engineering, including biology, chemistry, and cybernetics.

Anagenesis is the gradual evolution of a species that continues to exist as an interbreeding population. This contrasts with cladogenesis, which occurs when there is branching or splitting, leading to two or more lineages and resulting in separate species. Anagenesis does not always lead to the formation of a new species from an ancestral species. When speciation does occur as different lineages branch off and cease to interbreed, a core group may continue to be defined as the original species. The evolution of this group, without extinction or species selection, is anagenesis.

<span class="mw-page-title-main">Evolutionary ecology</span> Interaction of biology and evolution

Evolutionary ecology lies at the intersection of ecology and evolutionary biology. It approaches the study of ecology in a way that explicitly considers the evolutionary histories of species and the interactions between them. Conversely, it can be seen as an approach to the study of evolution that incorporates an understanding of the interactions between the species under consideration. The main subfields of evolutionary ecology are life history evolution, sociobiology, the evolution of interspecific interactions and the evolution of biodiversity and of ecological communities.

The Allee effect is a phenomenon in biology characterized by a correlation between population size or density and the mean individual fitness of a population or species.

<span class="mw-page-title-main">Hyperbolic growth</span> Growth function exhibiting a singularity at a finite time

When a quantity grows towards a singularity under a finite variation it is said to undergo hyperbolic growth. More precisely, the reciprocal function has a hyperbola as a graph, and has a singularity at 0, meaning that the limit as is infinite: any similar graph is said to exhibit hyperbolic growth.

<span class="mw-page-title-main">Andrey Korotayev</span> Russian anthropologist, economic historian, comparative political scientist, and sociologist

Andrey Vitalievich Korotayev is a Russian anthropologist, economic historian, comparative political scientist, demographer and sociologist, with major contributions to world-systems theory, cross-cultural studies, Near Eastern history, Big History, and mathematical modelling of social and economic macrodynamics.

The history of life on Earth seems to show a clear trend; for example, it seems intuitive that there is a trend towards increasing complexity in living organisms. More recently evolved organisms, such as mammals, appear to be much more complex than organisms, such as bacteria, which have existed for a much longer period of time. However, there are theoretical and empirical problems with this claim. From a theoretical perspective, it appears that there is no reason to expect evolution to result in any largest-scale trends, although small-scale trends, limited in time and space, are expected. From an empirical perspective, it is difficult to measure complexity and, when it has been measured, the evidence does not support a largest-scale trend.

<span class="mw-page-title-main">Interspecific competition</span> Form of competition

Interspecific competition, in ecology, is a form of competition in which individuals of different species compete for the same resources in an ecosystem. This can be contrasted with mutualism, a type of symbiosis. Competition between members of the same species is called intraspecific competition.

The evolution of biological complexity is one important outcome of the process of evolution. Evolution has produced some remarkably complex organisms – although the actual level of complexity is very hard to define or measure accurately in biology, with properties such as gene content, the number of cell types or morphology all proposed as possible metrics.

John Alroy is a paleobiologist born in New York in 1966 and now residing in Sydney, Australia.

<span class="mw-page-title-main">Daria Khaltourina</span> Sociologist and anthropologist

Daria Andreyevna Khaltourina is a Russian sociologist, anthropologist, demographer, and a public figure. She is the head of the Group of the Monitoring of Global and Regional Risks of the Russian Academy of Sciences, co-chairperson of the Russian Coalition for Alcohol Control, as well as the Russian Coalition for Tobacco Control. She is a laureate of the Russian Science Support Foundation Award in "The Best Economists of the Russian Academy of Sciences" nomination (2006).

<span class="mw-page-title-main">Mesozoic–Cenozoic radiation</span> The third major extended increase in biodiversity in the Phanerozoic

The Mesozoic–Cenozoic Radiation is the third major extended increase of biodiversity in the Phanerozoic, after the Cambrian Explosion and the Great Ordovician Biodiversification Event, which appeared to exceeded the equilibrium reached after the Ordovician radiation. Made known by its identification in marine invertebrates, this evolutionary radiation began in the Mesozoic, after the Permian extinctions, and continues to this date. This spectacular radiation affected both terrestrial and marine flora and fauna, during which the “modern” fauna came to replace much of the Paleozoic fauna. Notably, this radiation event was marked by the rise of angiosperms during the mid-Cretaceous, and the K-Pg extinction, which initiated the rapid increase in mammalian biodiversity.

The Pull of the Recent (POR) describes a phenomenon in which a combination of factors causes palaeontologists to overestimate diversity towards the present day. Biased preservation and sampling in the fossil record, results in past biodiversity estimates to be lower with modern taxa being considered more diverse because present biodiversity is the best sampled. However the overall impact of the POR does not seem to be as large as originally thought.

<span class="mw-page-title-main">Outline of evolution</span> Hierarchical outline list of articles related to evolution

The following outline is provided as an overview of and topical guide to evolution:

<span class="mw-page-title-main">Biodiversity loss</span> Extinction of species and local ecosystem loss reduction or loss of species in a given habitat

Biodiversity loss includes the worldwide extinction of different species, as well as the local reduction or loss of species in a certain habitat, resulting in a loss of biological diversity. The latter phenomenon can be temporary or permanent, depending on whether the environmental degradation that leads to the loss is reversible through ecological restoration/ecological resilience or effectively permanent. The current global extinction, has resulted in a biodiversity crisis being driven by human activities which push beyond the planetary boundaries and so far has proven irreversible.

References

  1. Markov, A.; Korotayev, A. (December 2007). "Phanerozoic marine biodiversity follows a hyperbolic trend". Palaeoworld . 16 (4): 311–318. doi:10.1016/j.palwor.2007.01.002.
  2. Markov, A.; Korotayev, A. (2008). "Hyperbolic growth of marine and continental biodiversity through the Phanerozoic and community evolution". Journal of General Biology. 69 (3): 175–194. PMID   18677962.

Sources