Allamoore Formation

Last updated
Allamoore Formation
Stratigraphic range: Ectasian
Type Formation
Underlies Tumbledown Formation
Overlies Carrizo Formation
Thickness3,000 feet (910 m)
Lithology
Primary Limestone
Other Chert, metavolcanic rock
Location
Coordinates 31°04′41″N105°00′14″W / 31.078°N 105.004°W / 31.078; -105.004
Region West Texas
CountryFlag of the United States (23px).png  United States
Type section
Named for Allamoore, Texas
Named byP.B. King
Year defined1940
Usa edcp relief location map.png
Orange pog.svg
Allamoore Formation (the United States)
Relief map of Texas.png
Orange pog.svg
Allamoore Formation (Texas)

The Allamoore Formation is a Precambrian geologic formation found in the vicinity of Van Horn, Texas. The formation is notable for the well-preserved microfossils found in chert beds within the formation. These may include early eukaryotes. Possible fossil burrows were reported in the formation in 1995, which would push the origin of the first animals (Metazoa) back to before 1000 million years ago. However, these have since been explained as diagenetic structures, formed by nonbiological processes as the sediments making up the formation were compacted and lithified.

Contents

Description

The Allamoore Formation consists of blue to brown thinly bedded limestone with interbedded chert seams. Masses of metavolcanic rock are also found within the formation, including metamorphosed basalts and tuffs that were once lava flows and volcanic ash beds. The formation is exposed only in a folded belt near Van Horn, Texas, where tectonic process tilted the beds nearly vertical. This exposed a thickness of over 3,000 feet (910 m) of limestone beds. [1] The formation overlies the Carrizo Formation and is in turn overlain by the Tumbledown Formation. [2]

The age of the Allamoore Formation is estimated at 1250 million years, based on radiometric dating of ash beds within the formation. The formation is thought to have been deposited during the Grenville Orogeny, when another continent (likely Africa) collided with North America. This led to the opening of rift basins along the southern margin of North America, where sediments accumulated. The sediments making up the Allamoore Formation largely escaped the severe metamorphism that affected most of the sedimentary rock laid down during the orogeny. [3] This makes the formation a valuable window into conditions at that time. [4]

Fossils

The chert beds of the Allamoore Formation contain exceptionally well-preserved microfossils. These were part of mat-building communities of microbes (stromatolites) that lived in shallow water and were occasionally exposed to air. The microorganisms were preserved in fine-grained chert shortly after their remains were buried in sediments. They appear to be mostly cyanobacteria, members of the families Entophysalidaceae and Chroococcaceae. The chert also preserves tubular remains of organisms resembling the modern Oscillatoria and other filamentary prokaryotes. The chert contains well-preserved large spheroidal cells exceeding 100 microns in diameter, which may be early examples of red or green eukaryotic algae. [4]

In 1995, a team of researchers reported the presence of sediment-filled tubes in the formation. These were interpreted as fossil burrows of very early animals. If confirmed, the finding would push the origin of animal life back to before 1000 million years ago. [5] However, the structures have since been interpreted as pseudo-traces, sedimentary structures formed in the sediments by inorganic processes as the sediments were converted to solid rock (diagenesis). [6]

History of investigation

The beds assigned to the formation were originally part of the (now-defunct) Millican Formation. They were assigned to the Allamoore Formation in 1940 by Philip B. King and named for exposures near the Allamoore Post Office. [1]

Notes

Related Research Articles

<span class="mw-page-title-main">Chert</span> Hard, fine-grained sedimentary rock composed of cryptocrystalline silica

Chert is a hard, fine-grained sedimentary rock composed of microcrystalline or cryptocrystalline quartz, the mineral form of silicon dioxide (SiO2). Chert is characteristically of biological origin, but may also occur inorganically as a chemical precipitate or a diagenetic replacement, as in petrified wood.

<span class="mw-page-title-main">Microfossil</span> Fossil that requires the use of a microscope to see it

A microfossil is a fossil that is generally between 0.001 mm and 1 mm in size, the visual study of which requires the use of light or electron microscopy. A fossil which can be studied with the naked eye or low-powered magnification, such as a hand lens, is referred to as a macrofossil.

<span class="mw-page-title-main">Taconic orogeny</span> Mountain-building period that affected most of New England

The Taconic orogeny was a mountain building period that ended 440 million years ago (Ma) and affected most of modern-day New England. A great mountain chain formed from eastern Canada down through what is now the Piedmont of the east coast of the United States. As the mountain chain eroded in the Silurian and Devonian periods, sediment spread throughout the present-day Appalachians and midcontinental North America.

<span class="mw-page-title-main">Gunflint chert</span> Geologic formation in Minnesota and Ontario

The Gunflint chert is a sequence of banded iron formation rocks that are exposed in the Gunflint Range of northern Minnesota and northwestern Ontario along the north shore of Lake Superior. The Gunflint Chert is of paleontological significance, as it contains evidence of microbial life from the Paleoproterozoic. The Gunflint Chert is composed of biogenic stromatolites. At the time of its discovery in the 1950s, it was the earliest form of life discovered and described in scientific literature, as well as the earliest evidence for photosynthesis. The black layers in the sequence contain microfossils that are 1.9 to 2.3 billion years in age. Stromatolite colonies of cyanobacteria that have converted to jasper are found in Ontario. The banded ironstone formation consists of alternating strata of iron oxide-rich layers interbedded with silica-rich zones. The iron oxides are typically hematite or magnetite with ilmenite, while the silicates are predominantly cryptocrystalline quartz as chert or jasper, along with some minor silicate minerals.

<span class="mw-page-title-main">Franciscan Complex</span> Late Mesozoic terrane of heterogeneous rocks in the California Coast Ranges

The Franciscan Complex or Franciscan Assemblage is a geologic term for a late Mesozoic terrane of heterogeneous rocks found throughout the California Coast Ranges, and particularly on the San Francisco Peninsula. It was named by geologist Andrew Lawson, who also named the San Andreas fault that defines the western extent of the assemblage.

<span class="mw-page-title-main">Paleobiology</span> Study of organic evolution using fossils

Paleobiology is an interdisciplinary field that combines the methods and findings found in both the earth sciences and the life sciences. Paleobiology is not to be confused with geobiology, which focuses more on the interactions between the biosphere and the physical Earth.

<span class="mw-page-title-main">Pilbara Craton</span> Old and stable part of the continental lithosphere located in Pilbara, Western Australia

The Pilbara Craton is an old and stable part of the continental lithosphere located in the Pilbara region of Western Australia.

Elso Sterrenberg Barghoorn was an American paleobotanist, called by his student Andrew Knoll, the present Fisher Professor of Natural History at Harvard, "the father of Pre-Cambrian palaeontology."

<span class="mw-page-title-main">Ediacaran biota</span> All organisms of the Ediacaran Period (c. 635–538.8 million years ago)

The Ediacaranbiota is a taxonomic period classification that consists of all life forms that were present on Earth during the Ediacaran Period. These were enigmatic tubular and frond-shaped, mostly sessile, organisms. Trace fossils of these organisms have been found worldwide, and represent the earliest known complex multicellular organisms. The term "Ediacara biota" has received criticism from some scientists due to its alleged inconsistency, arbitrary exclusion of certain fossils, and inability to be precisely defined.

<span class="mw-page-title-main">Geology of Bangladesh</span>

The Geology of Bangladesh is affected by the country's location, as Bangladesh is mainly a riverine country. It is the eastern two-thirds of the Ganges and Brahmaputra river delta plain stretching to the north from the Bay of Bengal. There are two small areas of slightly higher land in the north-centre and north-west composed of old alluvium called the Madhupur Tract and the Barind Tract, and steep, folded, hill ranges of older (Tertiary) rocks along the eastern border.

<span class="mw-page-title-main">Permineralization</span> Type of fossilization

Permineralization is a process of fossilization of bones and tissues in which mineral deposits form internal casts of organisms. Carried by water, these minerals fill the spaces within organic tissue. Because of the nature of the casts, permineralization is particularly useful in studies of the internal structures of organisms, usually of plants.

<span class="mw-page-title-main">Warrawoona Group</span>

The Warrawoona Group is a geological unit in Western Australia containing putative fossils of cyanobacteria cells. Dated 3.465 Ga, these microstructures, found in Archean chert, are considered to be the oldest known geological record of life on Earth.

<span class="mw-page-title-main">Archean life in the Barberton Greenstone Belt</span> Some of the most widely accepted fossil evidence for Archean life

The Barberton Greenstone Belt of eastern South Africa contains some of the most widely accepted fossil evidence for Archean life. These cell-sized prokaryote fossils are seen in the Barberton fossil record in rocks as old as 3.5 billion years. The Barberton Greenstone Belt is an excellent place to study the Archean Earth due to exposed sedimentary and metasedimentary rocks.

James William Schopf is an American paleobiologist and professor of earth sciences at the University of California Los Angeles. He is also Director of the Center for the Study of Evolution and the Origin of Life, and a member of the Department of Earth and Space Sciences, the Institute of Geophysics and Planetary Physics, and the Molecular Biology Institute at UCLA. He is most well known for his study of Precambrian prokaryotic life in Australia's Apex chert. Schopf has published extensively in the peer reviewed literature about the origins of life on Earth. He is the first to discover Precambrian microfossils in stromatolitic sediments of Australia (1965), South Africa (1966), Russia (1977), India (1978), and China (1984). He served as NASA's principal investigator of lunar samples during 1969–1974.

The geology of Ohio formed beginning more than one billion years ago in the Proterozoic eon of the Precambrian. The igneous and metamorphic crystalline basement rock is poorly understood except through deep boreholes and does not outcrop at the surface. The basement rock is divided between the Grenville Province and Superior Province. When the Grenville Province crust collided with Proto-North America, it launched the Grenville orogeny, a major mountain building event. The Grenville mountains eroded, filling in rift basins and Ohio was flooded and periodically exposed as dry land throughout the Paleozoic. In addition to marine carbonates such as limestone and dolomite, large deposits of shale and sandstone formed as subsequent mountain building events such as the Taconic orogeny and Acadian orogeny led to additional sediment deposition. Ohio transitioned to dryland conditions in the Pennsylvanian, forming large coal swamps and the region has been dryland ever since. Until the Pleistocene glaciations erased these features, the landscape was cut with deep stream valleys, which scoured away hundreds of meters of rock leaving little trace of geologic history in the Mesozoic and Cenozoic.

<span class="mw-page-title-main">Geology of New York (state)</span> Overview of the geology of the U.S. state of New York

The geology of the State of New York is made up of ancient Precambrian crystalline basement rock, forming the Adirondack Mountains and the bedrock of much of the state. These rocks experienced numerous deformations during mountain building events and much of the region was flooded by shallow seas depositing thick sequences of sedimentary rock during the Paleozoic. Fewer rocks have deposited since the Mesozoic as several kilometers of rock have eroded into the continental shelf and Atlantic coastal plain, although volcanic and sedimentary rocks in the Newark Basin are a prominent fossil-bearing feature near New York City from the Mesozoic rifting of the supercontinent Pangea.

The geology of Argentina includes ancient Precambrian basement rock affected by the Grenville orogeny, sediment filled basins from the Mesozoic and Cenozoic as well as newly uplifted areas in the Andes.

The geology of Newfoundland and Labrador includes basement rocks formed as part of the Grenville Province in the west and Labrador and the Avalonian microcontinent in the east. Extensive tectonic changes, metamorphism and volcanic activity have formed the region throughout Earth history.

The Dresser Formation is a Paleoarchean geologic formation that outcrops as a generally circular ring of hills the North Pole Dome area of the East Pilbara Terrane of the Pilbara Craton of Western Australia. This formation is one of many formations that comprise the Warrawoona Group, which is the lowermost of four groups that comprise the Pilbara Supergroup. The Dresser Formation is part of the Panorama greenstone belt that surrounds and outcrops around the intrusive North Pole Monzogranite. Dresser Formation consists of metamorphosed, blue, black, and white bedded chert; pillow basalt; carbonate rocks; minor felsic volcaniclastic sandstone and conglomerate; hydrothermal barite; evaporites; and stromatolites. The lowermost of three stratigraphic units that comprise the Dresser Formation contains some of the Earth's earliest commonly accepted evidence of life such as morphologically diverse stromatolites, microbially induced sedimentary structures, putative organic microfossils, and biologically fractionated carbon and sulfur isotopic data.

The Tumbledown Formation is a Precambrian geologic formation found in the vicinity of Van Horn, Texas. The formation consists of volcaniclastic rock interbedded with basalt lava flows. It is notable as part of an almost undeformed sequence of ancient rock beds in the otherwise highly deformed orogenic belt of the Grenville orogeny, which gives geologists a window on conditions on Earth around 1200 to 1100 million years ago.

References