American Invitational Mathematics Examination

Last updated

The American Invitational Mathematics Examination (AIME) is a selective and prestigious 15-question 3-hour test given since 1983 to those who rank in the top 5% on the AMC 12 high school mathematics examination (formerly known as the AHSME), and starting in 2010, those who rank in the top 2.5% on the AMC 10. Two different versions of the test are administered, the AIME I and AIME II. However, qualifying students can only take one of these two competitions.

Contents

The AIME is the second of two tests used to determine qualification for the United States Mathematical Olympiad (USAMO), the first being the AMC. [1]

The use of calculators is not allowed on the test, with only pencils, erasers, rulers, and compasses permitted. [2]

Format and scoring

The competition consists of 15 questions of increasing difficulty, where each answer is an integer between 0 and 999 inclusive. Thus the competition effectively removes the element of chance afforded by a multiple-choice test while preserving the ease of automated grading; answers are entered onto an OMR sheet, similar to the way grid-in math questions are answered on the SAT. Leading zeros must be gridded in; for example, answers of 7 and 43 must be written and gridded in as 007 and 043, respectively.

Concepts typically covered in the competition include topics in elementary algebra, geometry, trigonometry, as well as number theory, probability, and combinatorics. Many of these concepts are not directly covered in typical high school mathematics courses; thus, participants often turn to supplementary resources to prepare for the competition.

One point is earned for each correct answer, and no points are deducted for incorrect answers. No partial credit is given. Thus AIME scores are integers from 0 to 15 inclusive.

Some historical results [3] are:

ContestMean
score
Median
score
ContestMean

score

Median

score

2022 I4.8242018 I5.095
2022 IIUnknownUnknown2018 II5.485
2021 I5.4452017 I5.695
2021 II5.4252017 II5.645
2020 I5.7062016 I5.836
2020 II [lower-alpha 1] 6.1362016 II4.434
2019 I5.8862015 I5.295
2019 II6.4762015 II6.636

A student's score on the AIME is used in combination with their score on the AMC to determine eligibility for the USAMO. A student's score on the AMC is added to 10 times their score on the AIME. In 2006, the cutoff for eligibility in the USAMO was 217 combined points.

During the 1990s it was not uncommon for fewer than 2,000 students to qualify for the AIME, although 1994 was a notable exception where 99 students achieved perfect scores on the AHSME and the list of high scorers, which usually was distributed in small pamphlets, had to be distributed several months late in thick newspaper bundles.[ citation needed ]

History

The AIME began in 1983. It was given once per year on a Tuesday or Thursday in late March or early April. Beginning in 2000, the AIME is given twice per year, the second date being an "alternate" test given to accommodate those students who are unable to sit for the first test because of spring break, illness, or any other reason. However, under no circumstances may a student officially participate both competitions. The alternate competition, commonly called the "AIME2" or "AIME-II," is usually given exactly two weeks after the first test, on a Tuesday in early April. However, like the AMC, the AIME recently has been given on a Tuesday in early March, and on the Wednesday 15 days later, e.g. March 13 and 20, 2019. In 2020, the rapid spread of the COVID-19 pandemic led to the cancellation of the AIME II for that year. Instead, qualifying students were able to take the American Online Invitational Mathematics Examination, which contained the problems that were originally going to be on the AIME II. 2021's AIME I and II were also moved online.[ citation needed ]

Sample problems

where and are positive integers and is as large as possible, find (2003 AIME I #1)

Answer: 839

is strictly increasing and no set of four (not necessarily consecutive) terms forms an arithmetic progression. (2022 AIME I #6)

Answer: 228
Answer: 925
Answer: 375

[4]

Note

  1. Due to COVID-19, AIME II (AOIME) was moved online.

See also

Related Research Articles

In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is countable if there exists an injective function from it into the natural numbers; this means that each element in the set may be associated to a unique natural number, or that the elements of the set can be counted one at a time, although the counting may never finish due to an infinite number of elements.

In number theory, two integers a and b are coprime, relatively prime or mutually prime if the only positive integer that is a divisor of both of them is 1. Consequently, any prime number that divides a does not divide b, and vice versa. This is equivalent to their greatest common divisor (GCD) being 1. One says also ais prime tob or ais coprime withb.

<span class="mw-page-title-main">Integer</span> Number in {..., –2, –1, 0, 1, 2, ...}

An integer is the number zero (0), a positive natural number or a negative integer with a minus sign. The negative numbers are the additive inverses of the corresponding positive numbers. In the language of mathematics, the set of integers is often denoted by the boldface Z or blackboard bold .

<span class="mw-page-title-main">Prime number</span> Evenly divided only by 1 or itself

A prime number is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways of writing it as a product, 1 × 5 or 5 × 1, involve 5 itself. However, 4 is composite because it is a product (2 × 2) in which both numbers are smaller than 4. Primes are central in number theory because of the fundamental theorem of arithmetic: every natural number greater than 1 is either a prime itself or can be factorized as a product of primes that is unique up to their order.

Presburger arithmetic is the first-order theory of the natural numbers with addition, named in honor of Mojżesz Presburger, who introduced it in 1929. The signature of Presburger arithmetic contains only the addition operation and equality, omitting the multiplication operation entirely. The axioms include a schema of induction.

In mathematical logic, the Peano axioms, also known as the Dedekind–Peano axioms or the Peano postulates, are axioms for the natural numbers presented by the 19th century Italian mathematician Giuseppe Peano. These axioms have been used nearly unchanged in a number of metamathematical investigations, including research into fundamental questions of whether number theory is consistent and complete.

<span class="mw-page-title-main">Dyadic rational</span> Fraction with denominator a power of two

In mathematics, a dyadic rational or binary rational is a number that can be expressed as a fraction whose denominator is a power of two. For example, 1/2, 3/2, and 3/8 are dyadic rationals, but 1/3 is not. These numbers are important in computer science because they are the only ones with finite binary representations. Dyadic rationals also have applications in weights and measures, musical time signatures, and early mathematics education. They can accurately approximate any real number.

A multiplication algorithm is an algorithm to multiply two numbers. Depending on the size of the numbers, different algorithms are more efficient than others. Efficient multiplication algorithms have existed since the advent of the decimal system.

<span class="mw-page-title-main">Addition</span> Arithmetic operation

Addition is one of the four basic operations of arithmetic, the other three being subtraction, multiplication and division. The addition of two whole numbers results in the total amount or sum of those values combined. The example in the adjacent image shows two columns of three apples and two apples each, totaling at five apples. This observation is equivalent to the mathematical expression "3 + 2 = 5".

<span class="mw-page-title-main">Parity (mathematics)</span> Property of being an even or odd number

In mathematics, parity is the property of an integer of whether it is even or odd. An integer is even if it is a multiple of two, and odd if it is not. For example, −4, 0, 82 are even because

<span class="mw-page-title-main">Division by zero</span> Class of mathematical expression

In mathematics, division by zero is division where the divisor (denominator) is zero. Such a division can be formally expressed as , where a is the dividend (numerator). In ordinary arithmetic, the expression has no meaning, as there is no number that, when multiplied by 0, gives a ; thus, division by zero is undefined. Since any number multiplied by zero is zero, the expression is also undefined; when it is the form of a limit, it is an indeterminate form. Historically, one of the earliest recorded references to the mathematical impossibility of assigning a value to is contained in Anglo-Irish philosopher George Berkeley's criticism of infinitesimal calculus in 1734 in The Analyst.

<span class="mw-page-title-main">Analytic number theory</span> Exploring properties of the integers with complex analysis

In mathematics, analytic number theory is a branch of number theory that uses methods from mathematical analysis to solve problems about the integers. It is often said to have begun with Peter Gustav Lejeune Dirichlet's 1837 introduction of Dirichlet L-functions to give the first proof of Dirichlet's theorem on arithmetic progressions. It is well known for its results on prime numbers and additive number theory.

In arithmetic combinatorics, Szemerédi's theorem is a result concerning arithmetic progressions in subsets of the integers. In 1936, Erdős and Turán conjectured that every set of integers A with positive natural density contains a k-term arithmetic progression for every k. Endre Szemerédi proved the conjecture in 1975.

<span class="mw-page-title-main">Multiple choice</span> Assessment that are responded by choosing correct answers from a list of choices

Multiple choice (MC), objective response or MCQ is a form of an objective assessment in which respondents are asked to select only correct answers from the choices offered as a list. The multiple choice format is most frequently used in educational testing, in market research, and in elections, when a person chooses between multiple candidates, parties, or policies.

The United States of America Mathematical Olympiad (USAMO) is a highly selective high school mathematics competition held annually in the United States. Since its debut in 1972, it has served as the final round of the American Mathematics Competitions. In 2010, it split into the USAMO and the United States of America Junior Mathematical Olympiad (USAJMO).

The American Mathematics Competitions (AMC) are the first of a series of competitions in secondary school mathematics that determine the United States team for the International Mathematical Olympiad (IMO). The selection process takes place over the course of roughly four stages. At the last stage, the Mathematical Olympiad Summer Program (MOP), the United States coaches select six members to form the IMO team. The United States Math Team of 1994 is the first of the only two teams ever to achieve a perfect score (all six members earned perfect marks), and is colloquially known as the "dream team".

A residue numeral system (RNS) is a numeral system representing integers by their values modulo several pairwise coprime integers called the moduli. This representation is allowed by the Chinese remainder theorem, which asserts that, if M is the product of the moduli, there is, in an interval of length M, exactly one integer having any given set of modular values. The arithmetic of a residue numeral system is also called multi-modular arithmetic.


In mathematics, a generalized arithmetic progression is a generalization of an arithmetic progression equipped with multiple common differences – whereas an arithmetic progression is generated by a single common difference, a generalized arithmetic progression can be generated by multiple common differences. For example, the sequence is not an arithmetic progression, but is instead generated by starting with 17 and adding either 3 or 5, thus allowing multiple common differences to generate it. A semilinear set generalizes this idea to multiple dimensions -- it is a set of vectors of integers, rather than a set of integers.

Additive combinatorics is an area of combinatorics in mathematics. One major area of study in additive combinatorics are inverse problems: given the size of the sumset A + B is small, what can we say about the structures of and ? In the case of the integers, the classical Freiman's theorem provides a partial answer to this question in terms of multi-dimensional arithmetic progressions.

<span class="mw-page-title-main">Integer triangle</span> Triangle with integer side lengths

An integer triangle or integral triangle is a triangle all of whose side lengths are integers. A rational triangle is one whose side lengths are rational numbers; any rational triangle can be rescaled by the lowest common denominator of the sides to obtain a similar integer triangle, so there is a close relationship between integer triangles and rational triangles.

References

  1. "Invitational Competitions". Mathematical Association of America.
  2. "American Invitational Mathematics Examination". Mathematical Association of America. Retrieved 28 December 2020.
  3. "AMC Historical Results". Archived from the original on 2007-02-24. Retrieved 29 December 2020.
  4. "AIME Problems and Solutions".