American Invitational Mathematics Examination

Last updated

The American Invitational Mathematics Examination (AIME) is a selective and prestigious 15-question 3-hour test given since 1983 to those who rank in the top 5% on the AMC 12 high school mathematics examination (formerly known as the AHSME), and starting in 2010, those who rank in the top 2.5% on the AMC 10. Two different versions of the test are administered, the AIME I and AIME II. However, qualifying students can only take one of these two competitions.

Contents

The AIME is the second of two tests used to determine qualification for the United States Mathematical Olympiad (USAMO), the first being the AMC. [1]

The use of calculators is not allowed on the test, with only pencils, erasers, rulers, and compasses permitted. [2]

Format and scoring

The competition consists of 15 questions of increasing difficulty, where each answer is an integer between 0 and 999 inclusive. Thus the competition effectively removes the element of chance afforded by a multiple-choice test while preserving the ease of automated grading; answers are entered onto an OMR sheet, similar to the way grid-in math questions are answered on the SAT. Leading zeros must be gridded in; for example, answers of 7 and 43 must be written and gridded in as 007 and 043, respectively.

Concepts typically covered in the competition include topics in elementary algebra, geometry, trigonometry, as well as number theory, probability, and combinatorics. Many of these concepts are not directly covered in typical high school mathematics courses; thus, participants often turn to supplementary resources to prepare for the competition.

One point is earned for each correct answer, and no points are deducted for incorrect answers. No partial credit is given. Thus AIME scores are integers from 0 to 15 inclusive.

Some historical results [3] are:

ContestMean
score
Median
score
ContestMean

score

Median

score

2022 I4.8242018 I5.095
2022 IIUnknownUnknown2018 II5.485
2021 I5.4452017 I5.695
2021 II5.4252017 II5.645
2020 I5.7062016 I5.836
2020 II [lower-alpha 1] 6.1362016 II4.434
2019 I5.8862015 I5.295
2019 II6.4762015 II6.636

A student's score on the AIME is used in combination with their score on the AMC to determine eligibility for the USAMO or USAJMO. A student's score on an AMC exam is added to 10 times their score on the AIME to form a USAMO or USAJMO index.

Since 2017, the USAMO and USAJMO qualification cutoff has been split between the AMC A and B, as well as the AIME I and II. [4] Hence, there will be a total of 8 published USAMO and USAJMO qualification cutoffs per year, and a student can have up to 2 USAMO/USAJMO indices (via participating in both AMC contests). The student only needs to reach one qualification cutoff to take the USAMO or USAJMO.

During the 1990s, it was not uncommon for fewer than 2,000 students to qualify for the AIME, although 1994 was a notable exception where 99 students achieved perfect scores on the AHSME and the list of high scorers, which usually was distributed in small pamphlets, had to be distributed several months late in thick newspaper bundles.[ citation needed ]

History

The AIME began in 1983. It was given once per year on a Tuesday or Thursday in late March or early April. Beginning in 2000, the AIME is given twice per year, the second date being an "alternate" test given to accommodate those students who are unable to sit for the first test because of spring break, illness, or any other reason. However, under no circumstances may a student officially participate both competitions. The alternate competition, commonly called the "AIME2" or "AIME-II," is usually given exactly two weeks after the first test, on a Tuesday in early April. However, like the AMC, the AIME recently has been given on a Tuesday in early March, and on the Wednesday 8 days later, e.g. March 13 and 20, 2019. In 2020, the rapid spread of the COVID-19 pandemic led to the cancellation of the AIME II for that year. Instead, qualifying students were able to take the American Online Invitational Mathematics Examination, which contained the problems that were originally going to be on the AIME II. 2021's AIME I and II were also moved online.[ citation needed ], 2022's AIME I and II were administered both online and in-person, and starting from 2023, all AIME contests must be administered in-person. [5]

Sample problems

where and are positive integers and is as large as possible, find (2003 AIME I #1)

Answer: 839

is strictly increasing and no set of four (not necessarily consecutive) terms forms an arithmetic progression. (2022 AIME I #6)

Answer: 228
Answer: 925
Answer: 375

[6]

Note

  1. Due to COVID-19, AIME II (AOIME) was moved online.

See also

Related Research Articles

In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is countable if there exists an injective function from it into the natural numbers; this means that each element in the set may be associated to a unique natural number, or that the elements of the set can be counted one at a time, although the counting may never finish due to an infinite number of elements.

<span class="mw-page-title-main">Diophantine equation</span> Polynomial equation whose integer solutions are sought

In mathematics, a Diophantine equation is an equation, typically a polynomial equation in two or more unknowns with integer coefficients, for which only integer solutions are of interest. A linear Diophantine equation equates to a constant the sum of two or more monomials, each of degree one. An exponential Diophantine equation is one in which unknowns can appear in exponents.

<span class="mw-page-title-main">Prime number</span> Number divisible only by 1 or itself

A prime number is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways of writing it as a product, 1 × 5 or 5 × 1, involve 5 itself. However, 4 is composite because it is a product (2 × 2) in which both numbers are smaller than 4. Primes are central in number theory because of the fundamental theorem of arithmetic: every natural number greater than 1 is either a prime itself or can be factorized as a product of primes that is unique up to their order.

<span class="mw-page-title-main">Pythagorean triple</span> Integer side lengths of a right triangle

A Pythagorean triple consists of three positive integers a, b, and c, such that a2 + b2 = c2. Such a triple is commonly written (a, b, c), a well-known example is (3, 4, 5). If (a, b, c) is a Pythagorean triple, then so is (ka, kb, kc) for any positive integer k. A triangle whose side lengths are a Pythagorean triple is a right triangle and called a Pythagorean triangle.

<span class="mw-page-title-main">Cutoff frequency</span> Frequency response boundary

In physics and electrical engineering, a cutoff frequency, corner frequency, or break frequency is a boundary in a system's frequency response at which energy flowing through the system begins to be reduced rather than passing through.

<i>p</i>-adic number Number system extending the rational numbers

In number theory, given a prime number p, the p-adic numbers form an extension of the rational numbers which is distinct from the real numbers, though with some similar properties; p-adic numbers can be written in a form similar to decimals, but with digits based on a prime number p rather than ten, and extending to the left rather than to the right.

A multiplication algorithm is an algorithm to multiply two numbers. Depending on the size of the numbers, different algorithms are more efficient than others. Efficient multiplication algorithms have existed since the advent of the decimal numeral system.

<span class="mw-page-title-main">Exponentiation</span> Arithmetic operation

In mathematics, exponentiation is an operation involving two numbers: the base and the exponent or power. Exponentiation is written as bn, where b is the base and n is the power; this is pronounced as "b (raised) to the n". When n is a positive integer, exponentiation corresponds to repeated multiplication of the base: that is, bn is the product of multiplying n bases:

Hilbert's tenth problem is the tenth on the list of mathematical problems that the German mathematician David Hilbert posed in 1900. It is the challenge to provide a general algorithm that, for any given Diophantine equation, can decide whether the equation has a solution with all unknowns taking integer values.

In mathematics, the ring of integers of an algebraic number field is the ring of all algebraic integers contained in . An algebraic integer is a root of a monic polynomial with integer coefficients: . This ring is often denoted by or . Since any integer belongs to and is an integral element of , the ring is always a subring of .

In number theory, a formula for primes is a formula generating the prime numbers, exactly and without exception. Formulas for calculating primes do exist, however, they are computationally very slow. A number of constraints are known, showing what such a "formula" can and cannot be.

<span class="mw-page-title-main">Multiple choice</span> Assessment that are responded by choosing correct answers from a list of choices

Multiple choice (MC), objective response or MCQ is a form of an objective assessment in which respondents are asked to select only correct answers from the choices offered as a list. The multiple choice format is most frequently used in educational testing, in market research, and in elections, when a person chooses between multiple candidates, parties, or policies.

The United States of America Mathematical Olympiad (USAMO) is a highly selective high school mathematics competition held annually in the United States. Since its debut in 1972, it has served as the final round of the American Mathematics Competitions. In 2010, it split into the USAMO and the United States of America Junior Mathematical Olympiad (USAJMO).

The American Mathematics Competitions (AMCs) are the first of a series of competitions in secondary school mathematics that determine the United States of America's team for the International Mathematical Olympiad (IMO). The selection process takes place over the course of roughly five stages. At the last stage, the US selects six members to form the IMO team. The 1994 US IMO Team is the first of the only two teams ever to achieve a perfect score, and is colloquially known as the "dream team".

The Mathematical Olympiad Program is an intensive summer program held at Carnegie Mellon University. The main purpose of MOP, held since 1974, is to select and train the six members of the U.S. team for the International Mathematical Olympiad (IMO).

<span class="mw-page-title-main">Integer lattice</span> Lattice group in Euclidean space whose points are integer n-tuples

In mathematics, the n-dimensional integer lattice, denoted , is the lattice in the Euclidean space whose lattice points are n-tuples of integers. The two-dimensional integer lattice is also called the square lattice, or grid lattice. is the simplest example of a root lattice. The integer lattice is an odd unimodular lattice.

The Texas Math and Science Coaches Association, or TMSCA, is an organization for coaches of academic University Interscholastic League teams in Texas elementary schools, middle schools and high schools, specifically those that compete in mathematics and science-related tests.

The Worldwide Online Olympiad Training (WOOT) program was established in 2005 by Art of Problem Solving, with sponsorship from Google and quantitative hedge fund giant D. E. Shaw & Co., in order to meet the needs of the world's top high school math students. Sponsorship allowed free enrollment for students of the Mathematical Olympiad Program (MOP). D.E. Shaw continued to sponsor enrollment of those students for the 2006-2007 year of WOOT.

The College Scholastic Ability Test or CSAT, also abbreviated Suneung, is a standardized test which is recognized by South Korean universities. The Korea Institute of Curriculum and Evaluation (KICE) administers the annual test on the third Thursday in November. In 2020, however, it was postponed to the first Thursday in December, due to the COVID-19 pandemic.

In commutative algebra, an element b of a commutative ring B is said to be integral over a subring A of B if b is a root of some monic polynomial over A.

References

  1. "Invitational Competitions". Mathematical Association of America.
  2. "American Invitational Mathematics Examination". Mathematical Association of America. Retrieved 28 December 2020.
  3. "AMC Historical Results". Archived from the original on 2007-02-24. Retrieved 29 December 2020.
  4. "AMC Historical Results". Art of Problem Solving. Retrieved 1 October 2023.
  5. "AMC Platform and Administeration Policies". Mathematical Association of America. Retrieved 1 October 2023.
  6. "AIME Problems and Solutions".