Amino acid permease

Last updated
Amino acid permease
Identifiers
SymbolAA_permease
Pfam PF13520
Pfam clan CL0062
InterPro IPR004841
PROSITE PDOC00191
TCDB 2.A.3
OPM superfamily 64
OPM protein 3gia
Available protein structures:
Pfam   structures / ECOD  
PDB RCSB PDB; PDBe; PDBj
PDBsum structure summary

Amino acid permeases are membrane permeases involved in the transport of amino acids into the cell. A number of such proteins have been found to be evolutionary related. [1] [2] [3] These proteins contain 12 transmembrane segments.

Contents

See also

Human proteins containing this domain

CIP1; SLC12A1; SLC12A2; SLC12A3; SLC12A4; SLC12A5; SLC12A6; SLC12A7; SLC12A8; SLC12A9; SLC7A1; SLC7A10; SLC7A11; SLC7A13; SLC7A14; SLC7A2; SLC7A3; SLC7A4; SLC7A5; SLC7A6; SLC7A7; SLC7A8; SLC7A9;

Related Research Articles

<i>Saccharomyces cerevisiae</i> Species of yeast

Saccharomyces cerevisiae is a species of yeast. The species has been instrumental in winemaking, baking, and brewing since ancient times. It is believed to have been originally isolated from the skin of grapes. It is one of the most intensively studied eukaryotic model organisms in molecular and cell biology, much like Escherichia coli as the model bacterium. It is the microorganism which causes many common types of fermentation. S. cerevisiae cells are round to ovoid, 5–10 μm in diameter. It reproduces by budding.

<span class="mw-page-title-main">Synonymous substitution</span>

A synonymous substitution is the evolutionary substitution of one base for another in an exon of a gene coding for a protein, such that the produced amino acid sequence is not modified. This is possible because the genetic code is "degenerate", meaning that some amino acids are coded for by more than one three-base-pair codon; since some of the codons for a given amino acid differ by just one base pair from others coding for the same amino acid, a mutation that replaces the "normal" base by one of the alternatives will result in incorporation of the same amino acid into the growing polypeptide chain when the gene is translated. Synonymous substitutions and mutations affecting noncoding DNA are often considered silent mutations; however, it is not always the case that the mutation is silent.

<span class="mw-page-title-main">Fungal mating pheromone receptors</span> Family of G-protein-coupled receptors

Fungal pheromone mating factor receptors form a distinct family of G-protein-coupled receptors.

<span class="mw-page-title-main">Major intrinsic proteins</span>

Major intrinsic proteins comprise a large superfamily of transmembrane protein channels that are grouped together on the basis of homology. The MIP superfamily includes three subfamilies: aquaporins, aquaglyceroporins and S-aquaporins.

  1. The aquaporins (AQPs) are water selective.
  2. The aquaglyceroporins are permeable to water, but also to other small uncharged molecules such as glycerol.
  3. The third subfamily, with little conserved amino acid sequences around the NPA boxes, include 'superaquaporins' (S-aquaporins).
<span class="mw-page-title-main">Oxysterol-binding protein</span>

The oxysterol-binding protein (OSBP)-related proteins (ORPs) are a family of lipid transfer proteins (LTPs). Concretely, they constitute a family of sterol and phosphoinositide binding and transfer proteins in eukaryotes that are conserved from yeast to humans. They are lipid-binding proteins implicated in many cellular processes related with oxysterol, including signaling, vesicular trafficking, lipid metabolism, and nonvesicular sterol transport.

<span class="mw-page-title-main">Proton-coupled amino acid transporter 1</span> Protein-coding gene in the species Homo sapiens

Proton-coupled amino acid transporter 1 is a protein that in humans is encoded by the SLC36A1 gene.

<span class="mw-page-title-main">Y+L amino acid transporter 1</span> Protein-coding gene in the species Homo sapiens

Y+L amino acid transporter 1 is a protein that in humans is encoded by the SLC7A7 gene.

<span class="mw-page-title-main">Large neutral amino acids transporter small subunit 2</span> Protein-coding gene in the species Homo sapiens

Large neutral amino acids transporter small subunit 2 is a protein that in humans is encoded by the SLC7A8 gene.

<span class="mw-page-title-main">Lactose permease</span> Membrane protein

Lactose permease is a membrane protein which is a member of the major facilitator superfamily. Lactose permease can be classified as a symporter, which uses the proton gradient towards the cell to transport β-galactosides such as lactose in the same direction into the cell.

The Nucleobase:Cation Symporter-1 (NCS1) Family (TC# 2.A.39) consists of over 1000 currently sequenced proteins derived from Gram-negative and Gram-positive bacteria, archaea, fungi and plants. These proteins function as transporters for nucleobases including purines and pyrimidines. Members of this family possess twelve transmembrane α-helical spanners (TMSs). At least some of them have been shown to function in uptake by substrate:H+ symport mechanism.

Fet3p is a multicopper oxidase (MCO)2 found in Saccharomyces cerevisiae with a structure consisting of three cupredoxin-like β-barrel domains and four copper ions located in three distinct metal sites (T1 in domain 3, T2, and the binuclear T3 at the interface between domains 1 and 3). Fet3p is a type I membrane protein with an orientation that places the amino-terminal oxidase domain in the exocellular space (Nexo) and the carboxyl terminus in the cytoplasm (Ccyt).

The Formate-Nitrite Transporter (FNT) Family belongs to the Major Intrinsic Protein (MIP) Superfamily. FNT family members have been sequenced from Gram-negative and Gram-positive bacteria, archaea, yeast, plants and lower eukaryotes. The prokaryotic proteins of the FNT family probably function in the transport of the structurally related compounds, formate and nitrite.

<span class="mw-page-title-main">NPRL3</span> Protein-coding gene in humans

Nitrogen permease regulator-like 3 is a protein that in humans is encoded by the NPRL3 gene.

The lysosomal cystine transporter (LCT) family is part of the TOG Superfamily and includes secondary transport proteins that are derived from animals, plants, fungi and other eukaryotes. They exhibit 7 putative transmembrane α-helical spanners (TMSs) and vary in size between about 200 and 500 amino acyl residues, although most have between 300 and 400 residues.

The amino acid-polyamine-organocation (APC) superfamily is the second largest superfamily of secondary carrier proteins currently known, and it contains several Solute carriers. Originally, the APC superfamily consisted of subfamilies under the transporter classification number. This superfamily has since been expanded to include eighteen different families.

The Amino Acid-Polyamine-Organocation (APC) Family of transport proteins includes members that function as solute:cation symporters and solute:solute antiporters. They occur in bacteria, archaea, fungi, unicellular eukaryotic protists, slime molds, plants and animals. They vary in length, being as small as 350 residues and as large as 850 residues. The smaller proteins are generally of prokaryotic origin while the larger ones are of eukaryotic origin. Most of them possess twelve transmembrane α-helical spanners but have a re-entrant loop involving TMSs 2 and 3. The APC Superfamily was established to encompass a wider range of homologues.

The iron/lead transporter (ILT) family is a family of transmembrane proteins within the lysine exporter (LysE) superfamily. The ILT family includes two subfamilies, the iron-transporting (OFeT) family and the lead-transporting (PbrT) family. A representative list of the proteins belonging to these subfamilies of the ILT family can be found in the Transporter Classification Database.

The arsenical resistance-3 (ACR3) family is a member of the BART superfamily. Based on operon analyses, ARC3 homologues may function either as secondary carriers or as primary active transporters, similarly to the ArsB and ArsAB families. In the latter case ATP hydrolysis again energizes transport. ARC3 homologues transport the same anions as ArsA/AB homologues, though ArsB homologues are members of the IT Superfamily and homologues of the ARC3 family are within the BART Superfamily suggesting they may not be evolutionarily related.

The inorganic phosphate transporter (PiT) family is a group of carrier proteins derived from Gram-negative and Gram-positive bacteria, archaea, and eukaryotes.

<span class="mw-page-title-main">Alpha Arrestin</span>

The arrestin family of proteins is subdivided into α-arrestins (also referred to as arrestin-related trafficking adaptors or arrestin-like yeast proteins in yeast or ARRDCs in mammals, β-arrestins and Vps26-like arrestins proteins. The α-Arrestins are an ancestral branch of the larger arrestin family of proteins and they are conserved across eukaryotes but are best characterized in the budding yeast Saccharomyces cerevisiae; to-date there are 6 α-arrestins identified in mammalian cells and 14 α-arrestins identified in the budding yeast Saccharomyces cerevisiae. The yeast α-arrestin family comprises Ldb19/Art1, Ecm21/Art2, Aly1/Art6, Aly2/Art3, Rod1/Art4, Rog3/Art7, Art5, Csr2/Art8, Rim8/Art9, Art10, Bul1, Bul2, Bul3 and Spo23. The best characterized α-arrestin function to date is their endocytic regulation of plasma membrane proteins, including G-protein coupled receptors and nutrient transporters. α-Arrestins control endocytosis of these membrane proteins in response to cellular stressors, including nutrient or metal ion excess.

References

  1. Weber E, Jund R, Chevallier MR (1988). "Evolutionary relationship and secondary structure predictions in four transport proteins of Saccharomyces cerevisiae". J. Mol. Evol. 27 (4): 341–350. Bibcode:1988JMolE..27..341W. doi:10.1007/BF02101197. PMID   3146645. S2CID   27411542.
  2. Vandenbol M, Grenson M, Jauniaux JC (1989). "Nucleotide sequence of the Saccharomyces cerevisiae PUT4 proline-permease-encoding gene: similarities between CAN1, HIP1 and PUT4 permeases". Gene. 83 (1): 153–159. doi:10.1016/0378-1119(89)90413-7. PMID   2687114.
  3. Reizer J, Reizer A, Finley K, Kakuda D, Saier Jr MH, MacLeod CL (1993). "Mammalian integral membrane receptors are homologous to facilitators and antiporters of yeast, fungi, and eubacteria". Protein Sci. 2 (1): 20–30. doi:10.1002/pro.5560020103. PMC   2142299 . PMID   8382989.
This article incorporates text from the public domain Pfam and InterPro: IPR004841