Aminoaldehydes and aminoketones

Last updated

Aminoaldehydes and aminoketones are organic compounds that contain an amine functional group as well as either a aldehyde or ketone functional group. These compounds are important in biology and in chemical synthesis. Because of their bifunctional nature, they have attracted much attention from chemists.

Contents

Tertiary amine derivatives

Because primary and secondary amines react with aldehydes and ketones, the most common variety of these aminocarbonyl compounds feature tertiary amines. Such compounds are produced by amination of α-haloketones and α-haloaldehydes. [1] Examples include cathinones, methadone, molindone, pimeclone, ferruginine, and tropinone.

Secondary amine derivatives

Aminoketones containing secondary amines are typically stable when the ketone is located on a ring, e.g. 4-piperidinone, triacetonamine, acridone

Primary amine derivatives

Structure of aminoacetaldehyde. Aminoacetaldehyde.png
Structure of aminoacetaldehyde.

Most members of this class are unstable towards self-condensation, however some important examples do exist as intermediates in biosynthetic pathways e.g. glutamate-1-semialdehyde. The acyclic forms of certain amino sugars also qualify, for instance vancosamine. Aminoacetaldehyde, the simplest member of this subclass, is highly reactive toward self-condensation. Aminoacetaldehyde diethylacetal, (EtO)2CHCH2NH2, is a stable analogue that is commercially available. [2] 2-Aminobenzaldehyde with the formula C6H4(NH2)CHO is a prominent aromatic aminoaldehyde. [3] The compound is unstable with respect to self-condensation

Structure of nickel-aquo nitrate complex of the ligand derived from condensation of three equivalents of 2-aminobenzaldehyde. OABtrimerNinitrate.png
Structure of nickel-aquo nitrate complex of the ligand derived from condensation of three equivalents of 2-aminobenzaldehyde.

Aminoacetone is a prominent member of this class of compounds. It is unstable under normal laboratory conditions, but the hydrochloride [CH3C(O)CH2NH3]Cl is readily isolable. [5]

Aminoacetone is derived from decarboxylation of alanine. Aminoacetaldehyde is produced by the hydroxylation of taurine.

Related Research Articles

Ketone Class of organic compounds having structure RCOR´

In chemistry, a ketone is a functional group with the structure R2C=O, where R can be a variety of carbon-containing substituents. Ketones contain a carbonyl group (a carbon-oxygen double bond). The simplest ketone is acetone (R = R' = methyl), with the formula CH3C(O)CH3. Many ketones are of great importance in biology and in industry. Examples include many sugars (ketoses), many steroids (e.g., testosterone), and the solvent acetone.

Hydrazone

Hydrazones are a class of organic compounds with the structure R
1
R
2
C
=NNH
2
. They are related to ketones and aldehydes by the replacement of the oxygen with the NNH
2
functional group. They are formed usually by the action of hydrazine on ketones or aldehydes.

Dicarbonyl

A dicarbonyl is a molecule containing two carbonyl (C=O) groups. Although this term could refer to any organic compound containing two carbonyl groups, it is used more specifically to describe molecules in which both carbonyls are in close enough proximity that their reactivity is changed, such as 1,2-, 1,3-, and 1,4-dicarbonyls. Their properties often differ from those of monocarbonyls, and so they are usually considered functional groups of their own. These compounds can have symmetrical or unsymmetrical substituents on each carbonyl, and may also be functionally symmetrical or unsymmetrical.

A diol is a chemical compound containing two hydroxyl groups. An aliphatic diol is also called a glycol. This pairing of functional groups is pervasive, and many subcategories have been identified.

Imine

An imine is a functional group or chemical compound containing a carbon–nitrogen double bond. The nitrogen atom can be attached to a hydrogen (H) or an organic group (R). If this group is not a hydrogen atom, then the compound can sometimes be referred to as a Schiff base. The carbon atom has two additional single bonds. The term "imine" was coined in 1883 by the German chemist Albert Ladenburg.

Enolate Organic anions derived from the deprotonation of carbonyl compounds

Enolates are organic anions derived from the deprotonation of carbonyl compounds. Rarely isolated, they are widely used as reagents in the synthesis of organic compounds.

The Mannich reaction is an organic reaction which consists of an amino alkylation of an acidic proton placed next to a carbonyl functional group by formaldehyde and a primary or secondary amine or ammonia. The final product is a β-amino-carbonyl compound also known as a Mannich base. Reactions between aldimines and α-methylene carbonyls are also considered Mannich reactions because these imines form between amines and aldehydes. The reaction is named after chemist Carl Mannich.

Hemiaminal

A hemiaminal (also carbinolamine) is a functional group or type of chemical compound that has a hydroxyl group and an amine attached to the same carbon atom: -C(OH)(NR2)-. R can be hydrogen or an alkyl group. Hemiaminals are intermediates in imine formation from an amine and a carbonyl by alkylimino-de-oxo-bisubstitution.

The Knoevenagel condensation reaction is an organic reaction named after Emil Knoevenagel. It is a modification of the aldol condensation.

Iminium

An iminium cation in organic chemistry is a functional group with the general structure [R1R2C=NR3R4]+. They are common in synthetic chemistry and biology.

Aminoacetone Chemical compound

Aminoacetone is the organic compound with the formula CH3C(O)CH2NH2. Although stable in the gaseous form, once condensed it reacts with itself. The protonated derivative forms stable salts, e.g. aminoacetone hydrochloride ([CH3C(O)CH2NH3]Cl)). The semicarbazone of the hydrochloride is another bench-stable precursor.upon Aminoacetone is a metabolite that is implicated in the biosynthesis of methylglyoxal.

In nitrile reduction a nitrile is reduced to either an amine or an aldehyde with a suitable chemical reagent.

Sodium triacetoxyborohydride Chemical compound

Sodium triacetoxyborohydride, also known as sodium triacetoxyhydroborate, commonly abbreviated STAB, is a chemical compound with the formula Na(CH3COO)3BH. Like other borohydrides, it is used as a reducing agent in organic synthesis. This colourless salt is prepared by protonolysis of sodium borohydride with acetic acid:

Imidoyl chloride

Imidoyl chlorides are organic compounds that contain the functional group RC(NR')Cl. A double bond exist between the R'N and the carbon centre. These compounds are analogues of acyl chloride. Imidoyl chlorides tend to be highly reactive and are more commonly found as intermediates in a wide variety of synthetic procedures. Such procedures include Gattermann aldehyde synthesis, Houben-Hoesch ketone synthesis, and the Beckmann rearrangement. Their chemistry is related to that of enamines and their tautomers when the α hydrogen is next to the C=N bond. Many chlorinated N-heterocycles are formally imidoyl chlorides, e.g. 2-chloropyridine, 2, 4, and 6-chloropyrimidines.

Ureas

In chemistry, ureas are a class of organic compounds with the formula (R2N)2CO where R = H, alkyl, aryl, etc. Thus, in addition to describing a specific chemical compound (H2N)2CO), urea is the name of a functional group that is found in many compounds and materials of both practical and theoretical interest. Generally ureas are colorless crystalline solids, which, owing to the presence of fewer hydrogen bonds, exhibit melting points lower than that of urea itself.

Hydroxylamine-<i>O</i>-sulfonic acid Chemical compound

Hydroxylamine-O-sulfonic acid ("HOSA") is the inorganic compound with molecular formula H3NO4S that is formed by the sulfonation of hydroxylamine with oleum. It is a white, water-soluble and hygroscopic, solid, commonly represented by the condensed structural formula H2NOSO3H, though it actually exists as a zwitterion and thus is more accurately represented as +H3NOSO3. It is used as a reagent for the introduction of amine groups (–NH2), for the conversion of aldehydes into nitriles and alicyclic ketones into lactams (cyclic amides), and for the synthesis of variety of nitrogen-containing heterocycles.

2-Aminobenzaldehyde Chemical compound

2-Aminobenzaldehyde is an organic compound with the formula C6H4(NH2)CHO. It is one of three isomers of aminobenzaldehyde. It is a low-melting yellow solid that is soluble in water.

Aminoacetaldehyde Chemical compound

Aminoacetaldehyde is the organic compound with the formula OHCCH2NH2. Under the usual laboratory conditions, it is unstable, tending instead to undergo self-condensation. Aminoacetaldehyde diethylacetal is a stable surrogate.

Aminoacetaldehyde diethylacetal Chemical compound

Aminoacetaldehyde diethylacetal is the organic compound with the formula (EtO)2CHCH2NH2. A colorless liquid, it is used as a surrogate for aminoacetaldehyde.

Hydroxymethylation is a chemical reaction that installs the CH2OH group. The transformation can be implemented in many ways and applies to both industrial and biochemical processes.

References

  1. Fisher, Lawrence E.; Muchowski, Joseph M. (1990). "Synthesis of α-Aminoaldehydes and α-Aminoketone. A Review". Organic Preparations and Procedures International. 22 (4): 399–484. doi:10.1080/00304949009356309.
  2. Amato, Francesco; Marcaccini, Stefano (2005). "2,2-Diethoxy-1-Isocyanoethane". Organic Syntheses. 82: 18. doi: 10.15227/orgsyn.082.0018 .
  3. Lee Irvin Smith; J. W. Opie (1948). "o-Aminobenzaldehyde". Org. Synth. 28: 11. doi:10.15227/orgsyn.028.0011.
  4. Fleischer, E. B.; Klem, E. (1965). "The Structure of a Self-Condensation Product of o-Aminobenzaldehyde in the Presence of Nickel Ions". Inorganic Chemistry. 4 (5): 637–642. doi:10.1021/ic50027a008.
  5. John D. Hepworth (1965). "Aminoacetone Semicarbazone Hydrochloride". Organic Syntheses. 45: 1. doi:10.15227/orgsyn.045.0001.