Tropinone

Last updated
Tropinone
Tropinone.png
Tropinone-3D-sticks.png
Names
IUPAC name
8-Methyl-8-azabicyclo[3.2.1]octan-3-one
Other names
3-Tropinone
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
DrugBank
ECHA InfoCard 100.007.756 OOjs UI icon edit-ltr-progressive.svg
PubChem CID
UNII
  • InChI=1S/C8H13NO/c1-9-6-2-3-7(9)5-8(10)4-6/h6-7H,2-5H2,1H3/t6-,7+ Yes check.svgY
    Key: QQXLDOJGLXJCSE-KNVOCYPGSA-N Yes check.svgY
  • InChI=1S/C8H13NO/c1-9-6-2-3-7(9)5-8(10)4-6/h6-7H,2-5H2,1H3/t6-,7+
    Key: QQXLDOJGLXJCSE-KNVOCYPGBG
  • Key: QQXLDOJGLXJCSE-KNVOCYPGSA-N
  • CN1[C@@H]2CC[C@H]1CC(=O)C2
Properties
C8H13NO
Molar mass 139.195 g/mol
AppearanceBrown solid
Melting point 42.5 °C (108.5 °F; 315.6 K)
Boiling point (decomposes)
Hazards
GHS labelling:
GHS-pictogram-acid.svg GHS-pictogram-exclam.svg [1]
Danger
H302, H314 [1]
NFPA 704 (fire diamond)
NFPA 704.svgHealth 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g. chloroformFlammability 1: Must be pre-heated before ignition can occur. Flash point over 93 °C (200 °F). E.g. canola oilInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
2
1
0
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Tropinone is an alkaloid, famously synthesised in 1917 by Robert Robinson as a synthetic precursor to atropine, a scarce commodity during World War I. [2] [3] Tropinone and the alkaloids cocaine and atropine all share the same tropane core structure. Its corresponding conjugate acid at pH 7.3 major species is known as tropiniumone. [4]

Contents

Synthesis

The first synthesis of tropinone was by Richard Willstätter in 1901. It started from the seemingly related cycloheptanone, but required many steps to introduce the nitrogen bridge; the overall yield for the synthesis path is only 0.75%. [5] Willstätter had previously synthesized cocaine from tropinone, in what was the first synthesis and elucidation of the structure of cocaine. [6]

Willstatter tropinone synthesis Willstatter tropinone synthesis.png
Willstatter tropinone synthesis

Robinson's "double Mannich" reaction

The 1917 synthesis by Robinson is considered a classic in total synthesis [8] due to its simplicity and biomimetic approach. Tropinone is a bicyclic molecule, but the reactants used in its preparation are fairly simple: succinaldehyde, methylamine and acetonedicarboxylic acid (or even acetone). The synthesis is a good example of a biomimetic reaction or biogenetic-type synthesis because biosynthesis makes use of the same building blocks. It also demonstrates a tandem reaction in a one-pot synthesis. Furthermore, the yield of the synthesis was 17% and with subsequent improvements exceeded 90%. [5]

Robinson tropinone synthesis.png

This reaction is described as an intramolecular "double Mannich reaction" for obvious reasons. It is not unique in this regard, as others have also attempted it in piperidine synthesis. [9] [10]

In place of acetone, acetonedicarboxylic acid is known as the "synthetic equivalent" the 1,3-dicarboxylic acid groups are so-called "activating groups" to facilitate the ring forming reactions. The calcium salt is there as a "buffer" as it is claimed that higher yields are possible if the reaction is conducted at "physiological pH".

Reaction mechanism

The main features apparent from the reaction sequence below are:

  1. Nucleophilic addition of methylamine to succinaldehyde, followed by loss of water to create an imine
  2. Intramolecular addition of the imine to the second aldehyde unit and first ring closure
  3. Intermolecular Mannich reaction of the enolate of acetone dicarboxylate
  4. New enolate formation and new imine formation with loss of water for
  5. Second intramolecular Mannich reaction and second ring closure
  6. Loss of 2 carboxylic groups to tropinone
TropinoneSynthesisMechanism.svg

Some authors have actually tried to retain one of the CO2H groups. [11]

CO2R-tropinone has 4 stereoisomers, although the corresponding ecgonidine alkyl ester has only a pair of enantiomers.

From cycloheptanone

IBX dehydrogenation (oxidation) of cycloheptanone (suberone) to 2,6-cycloheptadienone [1192-93-4] followed by reaction with an amine is versatile a way of forming tropinones. [12] [13] The mechanism evoked is clearly delineated to be a double Michael reaction (i.e. conjugate addition).

Biochemistry method

[14]

Reduction of tropinone

The reduction of tropinone is mediated by NADPH-dependent reductase enzymes, which have been characterized in multiple plant species. [15] These plant species all contain two types of the reductase enzymes, tropinone reductase I and tropinone reductase II. TRI produces tropine and TRII produces pseudotropine. Due to differing kinetic and pH/activity characteristics of the enzymes and by the 25-fold higher activity of TRI over TRII, the majority of the tropinone reduction is from TRI to form tropine. [16]

Reduction of tropinone Reduction of tropinone.png
Reduction of tropinone

See also

Related Research Articles

<span class="mw-page-title-main">Alkaloid</span> Class of naturally occurring chemical compounds

Alkaloids are a class of basic, naturally occurring organic compounds that contain at least one nitrogen atom. This group also includes some related compounds with neutral and even weakly acidic properties. Some synthetic compounds of similar structure may also be termed alkaloids. In addition to carbon, hydrogen and nitrogen, alkaloids may also contain oxygen or sulfur. More rarely still, they may contain elements such as phosphorus, chlorine, and bromine.

In organic chemistry, the Mannich reaction is a three-component organic reaction that involves the amino alkylation of an acidic proton next to a carbonyl functional group by formaldehyde and a primary or secondary amine or ammonia. The final product is a β-amino-carbonyl compound also known as a Mannich base. Reactions between aldimines and α-methylene carbonyls are also considered Mannich reactions because these imines form between amines and aldehydes. The reaction is named after Carl Mannich.

The Pictet–Spengler reaction is a chemical reaction in which a β-arylethylamine undergoes condensation with an aldehyde or ketone followed by ring closure. The reaction was first discovered in 1911 by Amé Pictet and Theodor Spengler. Traditionally, an acidic catalyst in protic solvent was employed with heating; however, the reaction has been shown to work in aprotic media in superior yields and sometimes without acid catalysis. The Pictet–Spengler reaction can be considered a special case of the Mannich reaction, which follows a similar reaction pathway. The driving force for this reaction is the electrophilicity of the iminium ion generated from the condensation of the aldehyde and amine under acid conditions. This explains the need for an acid catalyst in most cases, as the imine is not electrophilic enough for ring closure but the iminium ion is capable of undergoing the reaction.

Reductive amination is a form of amination that involves the conversion of a carbonyl group to an amine via an intermediate imine. The carbonyl group is most commonly a ketone or an aldehyde. It is a common method to make amines and is widely used in green chemistry since it can be done catalytically in one-pot under mild conditions. In biochemistry, dehydrogenase enzymes use reductive amination to produce the amino acid, glutamate. Additionally, there is ongoing research on alternative synthesis mechanisms with various metal catalysts which allow the reaction to be less energy taxing, and require milder reaction conditions. Investigation into biocatalysts, such as imine reductases, have allowed for higher selectivity in the reduction of chiral amines which is an important factor in pharmaceutical synthesis.

<span class="mw-page-title-main">Suicide inhibition</span> Type of enzyme inhibition by forming an irreversible complex with the substrate

In biochemistry, suicide inhibition, also known as suicide inactivation or mechanism-based inhibition, is an irreversible form of enzyme inhibition that occurs when an enzyme binds a substrate analog and forms an irreversible complex with it through a covalent bond during the normal catalysis reaction. The inhibitor binds to the active site where it is modified by the enzyme to produce a reactive group that reacts irreversibly to form a stable inhibitor-enzyme complex. This usually uses a prosthetic group or a coenzyme, forming electrophilic alpha and beta unsaturated carbonyl compounds and imines.

<span class="mw-page-title-main">Petasis reaction</span>

The Petasis reaction is the multi-component reaction of an amine, a carbonyl, and a vinyl- or aryl-boronic acid to form substituted amines.

<span class="mw-page-title-main">Sparteine</span> Chemical compound

Sparteine is a class 1a antiarrhythmic agent; a sodium channel blocker. It is an alkaloid and can be extracted from scotch broom. It is the predominant alkaloid in Lupinus mutabilis, and is thought to chelate the bivalent metals calcium and magnesium. It is not FDA approved for human use as an antiarrhythmic agent, and it is not included in the Vaughan Williams classification of antiarrhythmic drugs.

<span class="mw-page-title-main">Larry E. Overman</span>

Larry E. Overman is Distinguished Professor of Chemistry at the University of California, Irvine. He was born in Chicago in 1943. Overman obtained a B.A. degree from Earlham College in 1965, and he completed his Ph.D. in chemistry from the University of Wisconsin–Madison in 1969, under Howard Whitlock Jr. Professor Overman is a member of the United States National Academy of Sciences and the American Academy of Arts and Sciences. He was the recipient of the Arthur C. Cope Award in 2003, and he was awarded the Tetrahedron Prize for Creativity in Organic Chemistry for 2008.

In enzymology, a tropinone reductase I (EC 1.1.1.206) is an enzyme that catalyzes the chemical reaction

In enzymology, a tropinone reductase II (EC 1.1.1.236) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Pseudopelletierine</span> Chemical compound

Pseudopelletierine is the main alkaloid derived from the root-bark of the pomegranate tree (Punica granatum), along with at least three other alkaloids: pelletierine, isopelletierine, and methylpelletierine (C9H17ON), which yield 1.8, 0.52, 0.01, and 0.20 grams per kilogram of raw bark.

<span class="mw-page-title-main">Biosynthesis of cocaine</span>

The biosynthesis of cocaine has long attracted the attention of biochemists and organic chemists. This interest is partly motivated by the strong physiological effects of cocaine, but a further incentive was the unusual bicyclic structure of the molecule. The biosynthesis can be viewed as occurring in two phases, one phase leading to the N-methylpyrrolinium ring, which is preserved in the final product. The second phase incorporates a C4 unit with formation of the bicyclic tropane core.

<span class="mw-page-title-main">Indole</span> Chemical compound

Indole is an aromatic, heterocyclic, organic compound with the formula C8H7N. It has a bicyclic structure, consisting of a six-membered benzene ring fused to a five-membered pyrrole ring. Indole is widely distributed in the natural environment and can be produced by a variety of bacteria. As an intercellular signal molecule, indole regulates various aspects of bacterial physiology, including spore formation, plasmid stability, resistance to drugs, biofilm formation, and virulence. The amino acid tryptophan is an indole derivative and the precursor of the neurotransmitter serotonin.

<span class="mw-page-title-main">2-Carbomethoxytropinone</span> Chemical compound

2-Carbomethoxytropinone (2-CMT) is a commonly used organic intermediate in the synthesis of cocaine and its analogues. As of at least 1999 no reaction pathway has been discovered that synthesizes cocaine-like compounds without utilizing the reduction of 2-CMT. The structure of cocaine was discovered by Richard Willstätter in 1898 after he synthesized it from 2-carbomethoxytropinone. Although it was originally believed that 2-CMT in nature was ultimately derived from ornithine and acetic acid, subsequent research has indicated other pathways exist for the biosynthesis of 2-CMT. A β-keto ester, 2-CMT exists in equilibrium with its keto–enol tautomer.

Biomimetic synthesis is an area of organic chemical synthesis that is specifically biologically inspired. The term encompasses both the testing of a "biogenetic hypothesis" through execution of a series of reactions designed to parallel the proposed biosynthesis, as well as programs of study where a synthetic reaction or reactions aimed at a desired synthetic goal are designed to mimic one or more known enzymic transformations of an established biosynthetic pathway. The earliest generally cited example of a biomimetic synthesis is Sir Robert Robinson's organic synthesis of the alkaloid tropinone.

Rearrangements, especially those that can participate in cascade reactions, such as the aza-Cope rearrangements, are of high practical as well as conceptual importance in organic chemistry, due to their ability to quickly build structural complexity out of simple starting materials. The aza-Cope rearrangements are examples of heteroatom versions of the Cope rearrangement, which is a [3,3]-sigmatropic rearrangement that shifts single and double bonds between two allylic components. In accordance with the Woodward-Hoffman rules, thermal aza-Cope rearrangements proceed suprafacially. Aza-Cope rearrangements are generally classified by the position of the nitrogen in the molecule :

<i>O</i>-Acylpseudotropine Class of chemical compounds

An O-acylpseudotropine is any derivative of pseudotropine in which the alcohol group is substituted with an acyl group.

<span class="mw-page-title-main">4-Hydroxy-1-methyl-4-(4-methylphenyl)-3-piperidyl 4-methylphenyl ketone</span> Chemical compound

4-Hydroxy-1-methyl-4-(4-methylphenyl)-3-piperidyl 4-methylphenyl ketone is a dopamine transporter reuptake inhibitor used as a lead compound to find a DRI transporter site antagonist.

<span class="mw-page-title-main">Pyonitrin</span> Chemical compound

Pyonitrins are a family of highly hydrogen-deficient alkaloids discovered from an insect-associated Pseudomonas protegens strain. In vivo, pyonitrins A-D show activity against pathogen Candida albicans, which commonly cause bloodstream infections.

<span class="mw-page-title-main">Nitro-Mannich reaction</span>

The nitro-Mannich reaction is the nucleophilic addition of a nitroalkane to an imine, resulting in the formation of a beta-nitroamine. With the reaction involving the addition of an acidic carbon nucleophile to a carbon-heteroatom double bond, the nitro-Mannich reaction is related to some of the most fundamental carbon-carbon bond forming reactions in organic chemistry, including the aldol reaction, Henry reaction and Mannich reaction.

References

  1. 1 2 "Tropinone". Substance Information. ECHA.
  2. Robinson R (1917). "LXIII. A Synthesis of Tropinone". Journal of the Chemical Society, Transactions. 111: 762–768. doi:10.1039/CT9171100762.
  3. Nicolaou KC, Vourloumis D, Winssinger N, Baran PS (2000). "The Art and Science of Total Synthesis at the Dawn of the Twenty-First Century". Angewandte Chemie International Edition. 39 (1): 44–122. doi:10.1002/(SICI)1521-3773(20000103)39:1<44::AID-ANIE44>3.0.CO;2-L. PMID   10649349.
  4. Chemical Entities of Biological Interest Identification code: ChEBI:57851 "tropiniumone"
  5. 1 2 Smit WA, Smit WA, Bochkov AF, Caple R (1998). Organic Synthesis. doi:10.1039/9781847551573. ISBN   978-0-85404-544-0.
  6. Humphrey AJ, O'Hagan D (2001). "Tropane alkaloid biosynthesis. A century old problem unresolved". Natural Product Reports . Royal Society of Chemistry. 18 (5): 494–502. doi:10.1039/b001713m. PMID   11699882.
  7. Doble M, Kruthiventi AK (2007). Green Chemistry and Engineering. Oxford: Elsevier. p. 34. ISBN   978-0-12-372532-5.
  8. Birch AJ (1993). "Investigating a Scientific Legend: The Tropinone Synthesis of Sir Robert Robinson, F.R.S". Notes and Records of the Royal Society of London. 47 (2): 277–296. doi:10.1098/rsnr.1993.0034. JSTOR   531792. S2CID   143267467.
  9. Wang S, Sakamuri S, Enyedy IJ, Kozikowski AP, Deschaux O, Bandyopadhyay BC, Tella SR, Zaman WA, Johnson KM (2000). "Discovery of a novel dopamine transporter inhibitor, 4-hydroxy-1-methyl-4-(4-methylphenyl)-3-piperidyl 4-methylphenyl ketone, as a potential cocaine antagonist through 3D-database pharmacophore searching. Molecular modeling, structure-activity relationships, and behavioral pharmacological studies". Journal of Medicinal Chemistry . 43 (3): 351–360. doi:10.1021/jm990516x. PMID   10669562.
  10. Wang S, Sakamuri, Enyedy, Kozikowski, Zaman, Johnson (2001). "Molecular modeling, structure--activity relationships and functional antagonism studies of 4-hydroxy-1-methyl-4-(4-methylphenyl)-3-piperidyl 4-methylphenyl ketones as a novel class of dopamine transporter inhibitors". Bioorganic & Medicinal Chemistry. 9 (7): 1753–1764. doi:10.1016/S0968-0896(01)00090-6. PMID   11425577.
  11. Findlay SP (1957). "Concerning 2-Carbomethoxytropinone". Journal of Organic Chemistry. 22 (11): 1385–1394. doi:10.1021/jo01362a022.
  12. U.S. patent 8,609,690
  13. Nicolaou KC, Montagnon T, Baran PS, Zhong YL (2002). "Iodine(V) reagents in organic synthesis. Part 4. O-Iodoxybenzoic acid as a chemospecific tool for single electron transfer-based oxidation processes". Journal of the American Chemical Society. 124 (10): 2245–58. doi:10.1021/ja012127+. PMID   11878978.
  14. Bedewitz MA, Jones AD, D'Auria JC, Barry CS (2018). "Tropinone synthesis via an atypical polyketide synthase and P450-mediated cyclization". Nature Communications. 9 (1): 5281. Bibcode:2018NatCo...9.5281B. doi: 10.1038/s41467-018-07671-3 . ISSN   2041-1723. PMC   6290073 . PMID   30538251.
  15. A. Portsteffen, B. Draeger, A. Nahrstedt (1992). "Two tropinone reducing enzymes from Datura stramonium transformed root cultures". Phytochemistry. 31 (4): 1135. Bibcode:1992PChem..31.1135P. doi:10.1016/0031-9422(92)80247-C.
  16. Boswell HD, Dräger B, McLauchlan WR, et al. (November 1999). "Specificities of the enzymes of N-alkyltropane biosynthesis in Brugmansia and Datura". Phytochemistry. 52 (5): 871–8. Bibcode:1999PChem..52..871B. doi:10.1016/S0031-9422(99)00293-9. PMID   10626376.