2-Carbomethoxytropinone

Last updated
2-Carbomethoxytropinone
Carbomethoxytropinone.svg
Names
IUPAC name
Methyl 3-oxotropane-2β-carboxylate
Systematic IUPAC name
Methyl (1R,2R,5S)-8-methyl-3-oxo-8-azabicyclo[3.2.1]octane-2-carboxylate
Other names
Carbomethoxy-tropinone; 2-Carbomethoxy-3-tropinone; Carbmethoxy-tropinone; Methyl 8-methyl-3-oxobicyclo[3.2.1]octane-2-carboxylate; Methyl 8-methyl-3-oxo-8-azabicyclo[3.2.1]octane-4-carboxylate; 2-(Methoxycarbonyl)-3-tropanone
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
PubChem CID
  • InChI=1S/C10H15NO3/c1-11-6-3-4-7(11)9(8(12)5-6)10(13)14-2/h6-7,9H,3-5H2, 1-2H3/t6-,7+,9+/m0/s1
    Key: WXEMSGQRTGSYOG-LKEWCRSYSA-N
  • CN1[C@H]2CC[C@@H]1[C@H](C(=O)C2)C(=O)OC
Properties
C10H15NO3
Molar mass 197.234 g·mol−1
Melting point 104 °C (219 °F; 377 K)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

2-Carbomethoxytropinone (2-CMT) is a commonly used organic intermediate in the synthesis of cocaine and its analogues. [1] As of at least 1999 no reaction pathway has been discovered that synthesizes cocaine-like compounds without utilizing the reduction of 2-CMT. [2] The structure of cocaine was discovered by Richard Willstätter in 1898 after he synthesized it from 2-carbomethoxytropinone. [3] [4] Although it was originally believed that 2-CMT in nature was ultimately derived from ornithine and acetic acid, [5] subsequent research has indicated other pathways exist for the biosynthesis of 2-CMT. [6] [7] A β-keto ester, 2-CMT exists in equilibrium with its keto–enol tautomer.

Contents

Synthesis

2-CMT (3) can be synthesized from 1,3-acetonedicarboxylate anhydride (1) by methanolysis followed by reaction with methylamine and succinaldehyde. [8]

Synthesis of 2-CMT 2-Carbomethoxytropinone synthesis.svg
Synthesis of 2-CMT

See also

Related Research Articles

<span class="mw-page-title-main">Alkaloid</span> Class of naturally occurring chemical compounds

Alkaloids are a broad class of naturally occurring organic compounds that contain at least one nitrogen atom. Some synthetic compounds of similar structure may also be termed alkaloids.

Chemical synthesis is the artificial execution of chemical reactions to obtain one or several products. This occurs by physical and chemical manipulations usually involving one or more reactions. In modern laboratory uses, the process is reproducible and reliable.

<span class="mw-page-title-main">Salvinorin A</span> Chemical compound

Salvinorin A is the main active psychotropic molecule in Salvia divinorum. Salvinorin A is considered a dissociative hallucinogen.

<span class="mw-page-title-main">Natural product</span> Chemical compound or substance produced by a living organism, found in nature

A natural product is a natural compound or substance produced by a living organism—that is, found in nature. In the broadest sense, natural products include any substance produced by life. Natural products can also be prepared by chemical synthesis and have played a central role in the development of the field of organic chemistry by providing challenging synthetic targets. The term natural product has also been extended for commercial purposes to refer to cosmetics, dietary supplements, and foods produced from natural sources without added artificial ingredients.

<span class="mw-page-title-main">Tropinone</span> Chemical compound

Tropinone is an alkaloid, famously synthesised in 1917 by Robert Robinson as a synthetic precursor to atropine, a scarce commodity during World War I. Tropinone and the alkaloids cocaine and atropine all share the same tropane core structure. Its corresponding conjugate acid at pH 7.3 major species is known as tropiniumone.

In organic chemistry, Madelung synthesis is a chemical reaction that produces indoles by the intramolecular cyclization of N-phenylamides using strong base at high temperature. The Madelung synthesis was reported in 1912 by Walter Madelung, when he observed that 2-phenylindole was synthesized using N-benzoyl-o-toluidine and two equivalents of sodium ethoxide in a heated, airless reaction. Common reaction conditions include use of sodium or potassium alkoxide as base in hexane or tetrahydrofuran solvents, at temperatures ranging between 200–400 °C. A hydrolysis step is also required in the synthesis. The Madelung synthesis is important because it is one of few known reactions that produce indoles from a base-catalyzed thermal cyclization of N-acyl-o-toluidines.

<span class="mw-page-title-main">Sparteine</span> Chemical compound

Sparteine is a class 1a antiarrhythmic agent and sodium channel blocker. It is an alkaloid and can be extracted from scotch broom. It is the predominant alkaloid in Lupinus mutabilis, and is thought to chelate the bivalent metals calcium and magnesium. It is not FDA approved for human use as an antiarrhythmic agent, and it is not included in the Vaughan Williams classification of antiarrhythmic drugs.

<span class="mw-page-title-main">Methylecgonidine</span> Chemical compound

Methylecgonidine is a chemical intermediate derived from ecgonine or cocaine.

<span class="mw-page-title-main">Alan R. Battersby</span> English organic chemist (1925–2018)

Sir Alan Rushton Battersby (4 March 1925 – 10 February 2018) was an English organic chemist best known for his work to define the chemical intermediates in the biosynthetic pathway to vitamin B12 and the reaction mechanisms of the enzymes involved. His research group was also notable for its synthesis of radiolabelled precursors to study alkaloid biosynthesis and the stereochemistry of enzymic reactions. He won numerous awards including the Royal Medal in 1984 and the Copley Medal in 2000. He was knighted in the 1992 New Year Honours. Battersby died in February 2018 at the age of 92.

In enzymology, a tropinone reductase I (EC 1.1.1.206) is an enzyme that catalyzes the chemical reaction

In enzymology, a tropinone reductase II (EC 1.1.1.236) is an enzyme that catalyzes the chemical reaction

The Stieglitz rearrangement is a rearrangement reaction in organic chemistry which is named after the American chemist Julius Stieglitz (1867–1937) and was first investigated by him and Paul Nicholas Leech in 1913. It describes the 1,2-rearrangement of trityl amine derivatives to triaryl imines. It is comparable to a Beckmann rearrangement which also involves a substitution at a nitrogen atom through a carbon to nitrogen shift. As an example, triaryl hydroxylamines can undergo a Stieglitz rearrangement by dehydration and the shift of a phenyl group after activation with phosphorus pentachloride to yield the respective triaryl imine, a Schiff base.

<span class="mw-page-title-main">Tropane alkaloid</span> Class of chemical compounds

Tropane alkaloids are a class of bicyclic [3.2.1] alkaloids and secondary metabolites that contain a tropane ring in their chemical structure. Tropane alkaloids occur naturally in many members of the plant family Solanaceae. Certain tropane alkaloids such as cocaine and scopolamine are notorious for their psychoactive effects, related usage and cultural associations. Particular tropane alkaloids such as these have pharmacological properties and can act as anticholinergics or stimulants.

<span class="mw-page-title-main">Biosynthesis of cocaine</span>

The biosynthesis of cocaine has long attracted the attention of biochemists and organic chemists. This interest is partly motivated by the strong physiological effects of cocaine, but a further incentive was the unusual bicyclic structure of the molecule. The biosynthesis can be viewed as occurring in two phases, one phase leading to the N-methylpyrrolinium ring, which is preserved in the final product. The second phase incorporates a C4 unit with formation of the bicyclic tropane core.

<span class="mw-page-title-main">Indole</span> Chemical compound

Indole is an organic compound with the formula C6H4CCNH3. Indole is classified as an aromatic heterocycle. It has a bicyclic structure, consisting of a six-membered benzene ring fused to a five-membered pyrrole ring. Indoles are derivatives of indole where one or more of the hydrogen atoms have been replaced by substituent groups. Indoles are widely distributed in nature, most notably as amino acid tryptophan and neurotransmitter serotonin.

<span class="mw-page-title-main">Keto acid</span> Organic compounds with a –COOH group and a C=O group

In organic chemistry, keto acids or ketoacids are organic compounds that contain a carboxylic acid group and a ketone group. In several cases, the keto group is hydrated. The alpha-keto acids are especially important in biology as they are involved in the Krebs citric acid cycle and in glycolysis.

<span class="mw-page-title-main">Torreyanic acid</span> Group of chemical compounds

Torreyanic acid is a dimeric quinone first isolated and by Lee et al. in 1996 from an endophyte, Pestalotiopsis microspora. This endophyte is likely the cause of the decline of Florida torreya, an endangered species that is related to the taxol-producing Taxus brevifolia. The natural product was found to be cytotoxic against 25 different human cancer cell lines with an average IC50 value of 9.4 μg/mL, ranging from 3.5 (NEC) to 45 (A549) μg/mL. Torreyanic acid was found to be 5-10 times more potent in cell lines sensitive to protein kinase C (PKC) agonists, 12-o-tetradecanoyl phorbol-13-acetate (TPA), and was shown to cause cell death via apoptosis. Torreyanic acid also promoted G1 arrest of G0 synchronized cells at 1-5 μg/mL levels, depending on the cell line. It has been proposed that the eukaryotic translation initiation factor EIF-4a is a potential biochemical target for the natural compound.

Biomimetic synthesis is an area of organic chemical synthesis that is specifically biologically inspired. The term encompasses both the testing of a "biogenetic hypothesis" through execution of a series of reactions designed to parallel the proposed biosynthesis, as well as programs of study where a synthetic reaction or reactions aimed at a desired synthetic goal are designed to mimic one or more known enzymic transformations of an established biosynthetic pathway. The earliest generally cited example of a biomimetic synthesis is Sir Robert Robinson's organic synthesis of the alkaloid tropinone.

<span class="mw-page-title-main">Erysodienone</span> Chemical compound

Erysodienone is a key precursor in the biosynthesis of many Erythrina-produced alkaloids. Early work was done by Derek Barton and co-workers to illustrate the biosynthetic pathways towards erythrina alkaloids. It was demonstrated that erysodienone could be synthesized from simple starting materials by a similar approach as its biosynthetic pathway, which led to the development of the biomimetic synthesis of erysodienone.

<span class="mw-page-title-main">Bis(cyclopentadienyl)titanium(III) chloride</span> Chemical compound

Bis(cyclopentadienyl)titanium(III) chloride, also known as the Nugent–RajanBabu reagent, is the organotitanium compound which exists as a dimer with the formula [(C5H5)2TiCl]2. It is an air sensitive green solid. The complex finds specialized use in synthetic organic chemistry as a single electron reductant.

References

  1. Findlay, Stephen P. (1957). "Concerning 2-Carbomethoxytropinone*". The Journal of Organic Chemistry. 22 (11): 1385–1394. doi:10.1021/jo01362a022.
  2. Simoni, Daniele; Roberti, Marinella; Andrisano, Vincenza; Manferdini, Monica; Rondanin, Riccardo; Invidiata, Francesco Paolo (1999). "Two-carbon bridge substituted cocaines: Enantioselective synthesis, attribution of the absolute configuration and biological activity of novel 6- and 7-methoxylated cocaines". Il Farmaco. 54 (5): 275–87. doi:10.1016/S0014-827X(99)00027-0. PMID   10418122.
  3. Humphrey, Andrew J.; O'Hagan, David (2001). "Tropane alkaloid biosynthesis. A century old problem unresolved". Natural Product Reports. 18 (5): 494–502. doi:10.1039/b001713m. PMID   11699882.
  4. Findlay, Stephen P. (1954). "The Three-dimensional Structure of the Cocaines. Part I. Cocaine and Pseudococaine". Journal of the American Chemical Society. 76 (11): 2855–2862. Bibcode:1954JAChS..76.2855F. doi:10.1021/ja01640a001.
  5. Leete, Edward (1983). "Chemistry of the tropane alkaloids. 33. 2-Carbomethoxy-3-tropinone: An advanced intermediate in the biosynthesis of cocaine". Journal of the American Chemical Society. 105 (22): 6727–6728. Bibcode:1983JAChS.105.6727L. doi:10.1021/ja00360a038.
  6. Leete, Edward.; Kim, Sung Hoon. (1988). "A revision of the generally accepted hypothesis for the biosynthesis of the tropane moiety of cocaine". Journal of the American Chemical Society. 110 (9): 2976. Bibcode:1988JAChS.110.2976L. doi:10.1021/ja00217a051.
  7. Jirschitzka, Jan; Dolke, Franziska; d’Auria, John C. (2013). "Increasing the Pace of New Discoveries in Tropane Alkaloid Biosynthesis". New Light on Alkaloid Biosynthesis and Future Prospects. Advances in Botanical Research. Vol. 68. p. 39. doi:10.1016/B978-0-12-408061-4.00002-X. ISBN   9780124080614.
  8. Proc F. according to Findlay[ full citation needed ]