Angers Bridge

Last updated • 3 min readFrom Wikipedia, The Free Encyclopedia

Angers Bridge
Pont1839.jpg
Coordinates 47°28′14″N0°33′50″W / 47.4706°N 0.5639°W / 47.4706; -0.5639
Crossed Maine River
Locale Angers, France
Other name(s)Basse-Chaîne Bridge
Characteristics
Design Suspension bridge
Material Cast iron
Width7.2 m (24 ft)
Height5.47 m (17.9 ft)
Longest span102 m (335 ft)
History
Designer Joseph Chaley and Bordillon
Construction start1836
Opened1839 (1839)
Collapsed16 April 1850
Location
Angers Bridge

Angers Bridge, also called the Basse-Chaîne Bridge, was a suspension bridge over the Maine River in Angers, France. It was designed by Joseph Chaley and Bordillon, and built between 1836 and 1839. [1] The bridge collapsed on 16 April 1850, while a battalion of French soldiers were marching across it, killing over 200.

Contents

The bridge spanned 102 m (335 ft), with two wire cables carrying a deck 7.2 m (24 ft) wide. Its towers consisted of cast iron columns 5.47 m (17.9 ft) tall. [1]

Collapse

Collapsed Basse-Chaine Bridge Pont de la Basse-Chaine (7).jpg
Collapsed Basse-Chaîne Bridge

Soldiers stationed in the region frequently used the bridge, and two battalions of the same regiment had crossed earlier that day. The third battalion arrived during a powerful thunderstorm when the wind was making the bridge oscillate. When the soldiers began to cross, their bodies acted as sails, further catching the wind. Survivors reported that they had been walking as if drunk and could barely keep themselves from falling, first to one side and then to the other. As usual in crossing that bridge, the soldiers had been ordered to break step and to space themselves farther apart than normal. However, their efforts to match the swaying and keep their balance may have caused them to involuntarily march with the same cadence, causing resonance. In any case, the oscillation increased. At a time when the bridge was covered with 483 soldiers and four other people (although the police had prevented many curiosity seekers from joining the march), the upstream anchoring cable on the right bank broke in its concrete mooring, three to four meters underground, with a noise like "a badly done volley from a firing squad". The adjacent downstream cable broke a second later, and the right-bank end of the deck fell, making the deck slope very steep and throwing soldiers into the river. Many of those who fell were saved by their fellow soldiers who had not yet crossed and by residents of Angers who came to the rescue, but a total of 226 people died. [2]

The failure was attributed to dynamic load due to the storm and the soldiers, particularly as they seem to have been somewhat in step, combined with corrosion of the anchors for the main cables. [2] The cable anchorages at Angers were found to be highly vulnerable, as they were surrounded by cement, which was believed to rustproof them for the indefinite future. However, the wire strands separated from their cement surrounds. This allowed water to penetrate and corrode the wires. [1] [2]

Aftermath

The disaster led France to abandon suspension bridges until 1870. There had been similar failures elsewhere, such as that at Great Yarmouth in England in May 1845, when 79 people were killed by the fall of the main deck. The fall of the Angers bridge raised serious questions about the integrity of suspension bridges, and some engineers (such as John A. Roebling) used reinforced decks in future structures such as the Brooklyn Bridge. Louis Vicat reported in 1853 on the problems with the anchorages, and all similar bridges in France had to be carefully inspected. [1]

A new bridge was built on the same site in 1960, using reinforced concrete beams.

The Angers bridge was not the first suspension bridge to collapse. Previous failures included the Dryburgh Abbey Bridge in 1818 and The Royal Suspension Chain Pier in Brighton in 1836. The Menai Suspension Bridge was damaged by wind in 1825, 1836 and 1839. [1] The Broughton Suspension Bridge had collapsed in 1831 when soldiers marched over it in step. [3] Subsequent spectacular suspension bridge collapses caused by wind include the failure of the Tacoma Narrows Bridge in 1940. However, the Angers bridge failure caused by far the greatest number of casualties.

When the London Thames Millennium Bridge was opened in 2000, the motion of pedestrians caused it to vibrate, and they fell into step with the vibrations, increasing them. [4] This same mechanism may have increased the vibrations of the Angers Bridge. The problem at the Millennium Bridge was corrected during the next two years.

Related Research Articles

<span class="mw-page-title-main">Suspension bridge</span> Type of bridge

A suspension bridge is a type of bridge in which the deck is hung below suspension cables on vertical suspenders. The first modern examples of this type of bridge were built in the early 1800s. Simple suspension bridges, which lack vertical suspenders, have a long history in many mountainous parts of the world.

<span class="mw-page-title-main">Millennium Bridge, London</span> Bridge over the River Thames in England

The Millennium Bridge, officially known as the London Millennium Footbridge, is a steel suspension bridge for pedestrians crossing the River Thames in London, England, linking Bankside with the City of London. It is owned and maintained by Bridge House Estates, a charitable trust overseen by the City of London Corporation. Construction began in 1998, and it initially opened on 10 June 2000.

<span class="mw-page-title-main">Tacoma Narrows Bridge</span> Twin suspension bridges spanning the Tacoma Narrows strait of Puget Sound in Washington state

The Tacoma Narrows Bridge is a pair of twin suspension bridges that span the Tacoma Narrows strait of Puget Sound in Pierce County, Washington. The bridges connect the city of Tacoma with the Kitsap Peninsula and carry State Route 16 over the strait. Historically, the name "Tacoma Narrows Bridge" has applied to the original bridge, nicknamed "Galloping Gertie", which opened in July 1940 but collapsed possibly because of aeroelastic flutter four months later, as well as to the successor of that bridge, which opened in 1950 and still stands today as the westbound lanes of the present-day two-bridge complex.

<span class="mw-page-title-main">Cable-stayed bridge</span> Type of bridge with cables directly from towers to deck

A cable-stayed bridge has one or more towers, from which cables support the bridge deck. A distinctive feature are the cables or stays, which run directly from the tower to the deck, normally forming a fan-like pattern or a series of parallel lines. This is in contrast to the modern suspension bridge, where the cables supporting the deck are suspended vertically from the main cable, anchored at both ends of the bridge and running between the towers. The cable-stayed bridge is optimal for spans longer than cantilever bridges and shorter than suspension bridges. This is the range within which cantilever bridges would rapidly grow heavier, and suspension bridge cabling would be more costly.

<span class="mw-page-title-main">Tacoma Narrows Bridge (1940)</span> Failed suspension bridge in Washington, US

The 1940 Tacoma Narrows Bridge, the first bridge at this location, was a suspension bridge in the U.S. state of Washington that spanned the Tacoma Narrows strait of Puget Sound between Tacoma and the Kitsap Peninsula. It opened to traffic on July 1, 1940, and dramatically collapsed into Puget Sound on November 7 of the same year. The bridge's collapse has been described as "spectacular" and in subsequent decades "has attracted the attention of engineers, physicists, and mathematicians". Throughout its short existence, it was the world's third-longest suspension bridge by main span, behind the Golden Gate Bridge and the George Washington Bridge.

<span class="mw-page-title-main">Tuned mass damper</span> Device designed to reduce vibrations in structures

A tuned mass damper (TMD), also known as a harmonic absorber or seismic damper, is a device mounted in structures to reduce mechanical vibrations, consisting of a mass mounted on one or more damped springs. Its oscillation frequency is tuned to be similar to the resonant frequency of the object it is mounted to, and reduces the object's maximum amplitude while weighing much less than it.

<span class="mw-page-title-main">John A. Roebling Suspension Bridge</span> Suspension bridge between the Ohio River

The John A. Roebling Suspension Bridge is a suspension bridge that spans the Ohio River between Cincinnati, Ohio, and Covington, Kentucky. When opened on December 1, 1866, it was the longest suspension bridge in the world at 1,057 feet (322 m) main span, which was later overtaken by John A. Roebling's most famous design of the 1883 Brooklyn Bridge at 1,595.5 feet (486.3 m). Pedestrians use the bridge to get between the hotels, bars, restaurants, and parking lots in Northern Kentucky. The bar and restaurant district at the foot of the bridge on the Kentucky side is known as Roebling Point.

<span class="mw-page-title-main">Simple suspension bridge</span> Type of bridge

A simple suspension bridge is a primitive type of bridge in which the deck of the bridge lies on two parallel load-bearing cables that are anchored at either end. They have no towers or piers. The cables follow a shallow downward catenary arc which moves in response to dynamic loads on the bridge deck.

<span class="mw-page-title-main">Vortex shedding</span> Oscillating flow effect resulting from fluid passing over a blunt body

In fluid dynamics, vortex shedding is an oscillating flow that takes place when a fluid such as air or water flows past a bluff body at certain velocities, depending on the size and shape of the body. In this flow, vortices are created at the back of the body and detach periodically from either side of the body forming a Kármán vortex street. The fluid flow past the object creates alternating low-pressure vortices on the downstream side of the object. The object will tend to move toward the low-pressure zone.

<span class="mw-page-title-main">Eastern span replacement of the San Francisco–Oakland Bay Bridge</span> Seismic stabilization megaproject in California (2002–2013)

The eastern span replacement of the San Francisco–Oakland Bay Bridge was a construction project to replace a seismically unsound portion of the Bay Bridge with a new self-anchored suspension bridge (SAS) and a pair of viaducts. The bridge is in the U.S. state of California and crosses the San Francisco Bay between Yerba Buena Island and Oakland. The span replacement took place between 2002 and 2013, and is the most expensive public works project in California history, with a final price tag of $6.5 billion, a 2,500% increase from the original estimate of $250 million, which was an initial estimate for a seismic retrofit of the span, not the full span replacement ultimately completed. Originally scheduled to open in 2007, several problems delayed the opening until September 2, 2013. With a width of 258.33 ft (78.74 m), comprising 10 general-purpose lanes, it is the world's widest bridge according to Guinness World Records.

<span class="mw-page-title-main">Niagara Falls Suspension Bridge</span> Defunct bridge spanning the Niagara River

The Niagara Falls Suspension Bridge stood from 1855 to 1897 across the Niagara River and was the world's first working railway suspension bridge. It spanned 825 feet (251 m) and stood 2.5 miles (4.0 km) downstream of Niagara Falls, where it connected Niagara Falls, Ontario to Niagara Falls, New York. Trains used the upper of its two decks, while pedestrians and carriages used the lower. The bridge was the idea of Canadian politicians, and it was built by an American company and a Canadian company. It was most commonly called the Suspension Bridge, although other names included Niagara Railway Suspension Bridge, Niagara Suspension Bridge, and its official American name of the International Suspension Bridge.

<span class="mw-page-title-main">Mechanical resonance</span> Tendency of a mechanical system

Mechanical resonance is the tendency of a mechanical system to respond at greater amplitude when the frequency of its oscillations matches the system's natural frequency of vibration closer than it does other frequencies. It may cause violent swaying motions and potentially catastrophic failure in improperly constructed structures including bridges, buildings and airplanes. This is a phenomenon known as resonance disaster.

<span class="mw-page-title-main">Martin Olav Sabo Bridge</span> Suspension bridge for a shared-use path in Minneapolis

The Martin Olav Sabo Bridge is a bridge in the city of Minneapolis and the first cable-stayed suspension bridge in the U.S. state of Minnesota. Formerly the Midtown Greenway Pedestrian Bridge, it was renamed in honor of former Representative Martin Olav Sabo, a fourteen-term member of Congress from Minnesota.

Joseph Chaley was a French civil engineer and a pioneer designer of suspension bridges in the 19th century. He was a medical officer in the army before becoming a bridge designer.

<span class="mw-page-title-main">Dryburgh Abbey Bridge</span>

Dryburgh Abbey Bridge was a cable-stayed footbridge of significant historical interest erected near Dryburgh Abbey, in the Borders of Scotland. It connected the villages of Dryburgh and St. Boswells, across the River Tweed. A crossing had existed here for centuries, originally with a ferry service.

<span class="mw-page-title-main">Broughton Suspension Bridge</span> Bridge in Manchester, England, completed in 1826

Broughton Suspension Bridge was an iron chain suspension bridge built in 1826 to span the River Irwell between Broughton and Pendleton, now in Salford, Greater Manchester, England. One of Europe's first suspension bridges, it has been attributed to Samuel Brown, although some suggest it was built by Thomas Cheek Hewes, a Manchester millwright and textile machinery manufacturer.

<span class="mw-page-title-main">Tacoma Narrows Bridge (1950)</span> Suspension bridge in Washington State

The 1950 Tacoma Narrows Bridge is a suspension bridge in the U.S. state of Washington that carries the westbound lanes of Washington State Route 16 across the Tacoma Narrows strait, between the city of Tacoma and the Kitsap Peninsula. Opened on October 14, 1950, it was built in the same location as the original Tacoma Narrows Bridge, which collapsed due to a windstorm on November 7, 1940. It is the older of the twin bridges that make up the Tacoma Narrows Bridge crossing of the Tacoma Narrows, and carried both directions of traffic across the strait until 2007. At the time of its construction, the bridge was, like its predecessor, the third-longest suspension bridge in the world in terms of main span length, behind the Golden Gate Bridge and George Washington Bridge; it is now the 46th-longest suspension bridge in the world.

<span class="mw-page-title-main">Silver Bridge</span> Suspension bridge that stood over the Ohio River from 1928 to 1967

The Silver Bridge was an eyebar-chain suspension bridge built in 1928 which carried U.S. Route 35 over the Ohio River, connecting Point Pleasant, West Virginia, and Gallipolis, Ohio. Officially named the Point Pleasant Bridge, it was popularly known as the Silver Bridge for the color of its aluminum paint.

<span class="mw-page-title-main">Structural integrity and failure</span> Ability of a structure to support a designed structural load without breaking

Structural integrity and failure is an aspect of engineering that deals with the ability of a structure to support a designed structural load without breaking and includes the study of past structural failures in order to prevent failures in future designs.

The Saint-Just-Saint-Rambert bridge, also known as the "Grand Pont sur la Loire", is a suspension bridge located in the Loire department that spans the Loire at Saint-Just-Saint-Rambert. It facilitates the deviation of the departmental road D 498, which links the A72 autoroute to the west of the town of Bonson.

References

  1. 1 2 3 4 5 Peters, Tom F., "Transitions in Engineering: Guillaume Henri Dufour and the Early 19th Century Cable Suspension Bridges", Birkhauser, 1987, ISBN   3-7643-1929-1
  2. 1 2 3 "Rapport... de la commission d'enquête... pour rechercher les causes et les circonstances qui ont amené la chute du pont suspendu de la Basse-Chaîne". Annales des Ponts et Chaussées: Partie Technique: 394–411. 1850. Retrieved 27 March 2011.
  3. Braun, Martin (1993). Differential Equations and Their Applications: An Introduction to Applied Mathematics (4 ed.). New York: Springer-Verlag. p. 175. ISBN   978-0-387-97894-9 . Retrieved 30 May 2009.
  4. Strogatz, Steven; Abrams, DM; McRobie, A; Eckhardt, B; Ott, E; et al. (2005). "Theoretical mechanics: Crowd synchrony on the Millennium Bridge". Nature. 438 (7064): 43–4. doi:10.1038/438043a. PMID   16267545. S2CID   4427260. Abstract only; full text requires fee or membership.

Further reading

47°28′14″N00°33′50″W / 47.47056°N 0.56389°W / 47.47056; -0.56389