A Request for Comments (RFC), in the context of Internet governance, is a type of publication from the Internet Engineering Task Force (IETF) and the Internet Society (ISOC), usually describing methods, behaviors, research, or innovations applicable to the working of the Internet and Internet-connected systems.
Almost every April Fools' Day (1 April) since 1989, the Internet RFC Editor has published one or more humorous Request for Comments (RFC) documents, following in the path blazed by the June 1973 RFC 527 called ARPAWOCKY, a parody of Lewis Carroll's nonsense poem "Jabberwocky". The following list also includes humorous RFCs published on other dates.
{{citation}}
: CS1 maint: numeric names: authors list (link)Informational.An RECN message SHOULD be sent by a router in response to a host that is generating traffic at a rate persistently unfair to other competing flows and that has not reacted to previous packet losses or ECN marks.
Send all your reports of possible violations and all tips about wrongdoing to /dev/null. The Protocol Police are listening and will take care of it.
The RFC Editor accepts submission of properly formatted April Fools' Day RFCs from the general public, and considers them for publication in the same year if received at least two weeks prior to April 1st. [6] [7] This practice of publishing April Fool's Day RFCs is specifically acknowledged in the instructions memo for RFC authors, with a tongue-in-cheek note saying: "Note that in past years the RFC Editor has sometimes published serious documents with April 1 dates. Readers who cannot distinguish satire by reading the text may have a future in marketing." [6]
An Internet Protocol address is a numerical label such as 192.0.2.1 that is assigned to a device connected to a computer network that uses the Internet Protocol for communication. IP addresses serve two main functions: network interface identification, and location addressing.
Internet Protocol version 4 (IPv4) is the fourth version of the Internet Protocol (IP). It is one of the core protocols of standards-based internetworking methods in the Internet and other packet-switched networks. IPv4 was the first version deployed for production on SATNET in 1982 and on the ARPANET in January 1983. It is still used to route most Internet traffic today, even with the ongoing deployment of Internet Protocol version 6 (IPv6), its successor.
Internet Protocol version 6 (IPv6) is the most recent version of the Internet Protocol (IP), the communications protocol that provides an identification and location system for computers on networks and routes traffic across the Internet. IPv6 was developed by the Internet Engineering Task Force (IETF) to deal with the long-anticipated problem of IPv4 address exhaustion, and was intended to replace IPv4. In December 1998, IPv6 became a Draft Standard for the IETF, which subsequently ratified it as an Internet Standard on 14 July 2017.
A multicast address is a logical identifier for a group of hosts in a computer network that are available to process datagrams or frames intended to be multicast for a designated network service. Multicast addressing can be used in the link layer, such as Ethernet multicast, and at the internet layer for Internet Protocol Version 4 (IPv4) or Version 6 (IPv6) multicast.
A subnetwork, or subnet, is a logical subdivision of an IP network. The practice of dividing a network into two or more networks is called subnetting.
In computer networking, localhost is a hostname that refers to the current computer used to access it. The name localhost is reserved for loopback purposes. It is used to access the network services that are running on the host via the loopback network interface. Using the loopback interface bypasses any local network interface hardware.
Generic Routing Encapsulation (GRE) is a tunneling protocol developed by Cisco Systems that can encapsulate a wide variety of network layer protocols inside virtual point-to-point links or point-to-multipoint links over an Internet Protocol network.
In Internet networking, a private network is a computer network that uses a private address space of IP addresses. These addresses are commonly used for local area networks (LANs) in residential, office, and enterprise environments. Both the IPv4 and the IPv6 specifications define private IP address ranges.
The Virtual Router Redundancy Protocol (VRRP) is a computer networking protocol that provides for automatic assignment of available Internet Protocol (IP) routers to participating hosts. This increases the availability and reliability of routing paths via automatic default gateway selections on an IP subnetwork.
In the Internet addressing architecture, the Internet Engineering Task Force (IETF) and the Internet Assigned Numbers Authority (IANA) have reserved various Internet Protocol (IP) addresses for special purposes.
Internet Control Message Protocol version 6 (ICMPv6) is the implementation of the Internet Control Message Protocol (ICMP) for Internet Protocol version 6 (IPv6). ICMPv6 is an integral part of IPv6 and performs error reporting and diagnostic functions.
In computer networking, a link-local address is a network address that is valid only for communications on a local link, i.e. within a subnetwork that a host is connected to. Link-local addresses are most often unicast network addresses assigned automatically through a process known as stateless address autoconfiguration (SLAAC) or link-local address autoconfiguration, also known as automatic private IP addressing (APIPA) or auto-IP. Link-local addresses are not all unicast; e.g. IPv6 addresses beginning with ff02:, and IPv4 addresses beginning with 224.0.0. are multicast addresses that are link-local.
The internet layer is a group of internetworking methods, protocols, and specifications in the Internet protocol suite that are used to transport network packets from the originating host across network boundaries; if necessary, to the destination host specified by an IP address. The internet layer derives its name from its function facilitating internetworking, which is the concept of connecting multiple networks with each other through gateways.
In computer networking, the Tunnel Setup Protocol (TSP) is an experimental networking control protocol used to negotiate IP tunnel setup parameters between a tunnel client host and a tunnel broker server, the tunnel end-points. A major use of TSP is in IPv6 transition mechanisms.
An IPv6 transition mechanism is a technology that facilitates the transitioning of the Internet from the Internet Protocol version 4 (IPv4) infrastructure in use since 1983 to the successor addressing and routing system of Internet Protocol Version 6 (IPv6). As IPv4 and IPv6 networks are not directly interoperable, transition technologies are designed to permit hosts on either network type to communicate with any other host.
An Internet Protocol Version 6 address is a numeric label that is used to identify and locate a network interface of a computer or a network node participating in a computer network using IPv6. IP addresses are included in the packet header to indicate the source and the destination of each packet. The IP address of the destination is used to make decisions about routing IP packets to other networks.
An IPv6 packet is the smallest message entity exchanged using Internet Protocol version 6 (IPv6). Packets consist of control information for addressing and routing and a payload of user data. The control information in IPv6 packets is subdivided into a mandatory fixed header and optional extension headers. The payload of an IPv6 packet is typically a datagram or segment of the higher-level transport layer protocol, but may be data for an internet layer or link layer instead.
NAT64 is an IPv6 transition mechanism that facilitates communication between IPv6 and IPv4 hosts by using a form of network address translation (NAT). The NAT64 gateway is a translator between IPv4 and IPv6 protocols, for which function it needs at least one IPv4 address and an IPv6 network segment comprising a 32-bit address space. The "well-known prefix" reserved for this service is 64:ff9b::/96.
Rémi Després is a French engineer and entrepreneur known for his contributions on data networking.