Archimede combined cycle power plant | |
---|---|
Official name | Centrale a ciclo combinato Archimede |
Country | Italy |
Location | Priolo Gargallo, Syracuse |
Coordinates | 37°8′0″N15°12′58″E / 37.13333°N 15.21611°E |
Status | Operational |
Commission date | 2003 (combined cycle station) 2010 (solar field) |
Owner(s) | Enel |
Solar farm | |
Type | CSP |
CSP technology | Parabolic trough |
Total collector area | 30,000 square metres (320,000 sq ft) |
Site resource | 1,936 kWh/m2/yr |
Thermal power station | |
Primary fuel | Natural gas |
Secondary fuel | Solar |
Site area | 11 hectares (27 acres) |
Cooling source | Ionian Sea |
Combined cycle? | Yes |
Thermal capacity | 15 MWth (solar field alone) |
Power generation | |
Units operational | 2 × 257 MW 1 × 122 MW |
Make and model | 2 × Siemens V94 3/A 1 × steam turbine |
Nameplate capacity | 636 MW |
Storage capacity | 15 MW·hth |
External links | |
Commons | Related media on Commons |
Archimede combined cycle power plant (also known as Centrale a ciclo combinato Archimede, once Centrale Enel Priolo Gargallo [1] ) is an integrated solar combined cycle (ISCC) power generation plant at Priolo Gargallo near Syracuse in Sicily, Italy. The combine cycle section was inaugurated in 2003, and the solar field on 14 July 2010. [2] [3] [4] The solar field is the first to use molten salt for heat transfer and storage which is integrated with the combined-cycle gas facility. [2] [4] [5] [6] It uses technology developed by ENEA and Archimede Solar Energy, a joint venture between Angelantoni Industrie and Siemens Energy. Archimede is owned and operated by Enel. [2]
The plant is called "Archimedes" (the famous resident of the nearby Magna Graecia Hellenistic city of Syracuse) after the rows of huge parabolic mirrors used to capture the sun's rays, which recall the "burning mirrors" that Archimedes is said to have used to set fire to the Roman ships besieging Syracuse during the Siege of Syracuse (214–212 BC). [2] The existing gas-fired power plant is on about a 25 hectares (62 acres) site area (excluding the solar field), and is augmented by the 11 hectares (27 acres) Archimede solar field.
There are two Siemens V94 3/A gas turbine groups with 257 MWe net alternator each. The gas turbine discharge, outgoing 588 °C (1,090 °F), produce steam, through a so-called HRSG (Heat recovery steam generator) which then feeds a steam turbine group (with high, medium and low pressure turbines) driving a 122 MWe net alternator. The solar component integrates the steam production of the gas turbines through a SSG (Solar Steam Generator), up to a maximum of 15 MWth (thermal net power), in conditions of maximum insolation. The HSRG-1 and HSRG-2 operate in parallel with the SSG, shortly before entering steam turbine group. This means that every unit of thermal energy coming from the solar field delivers electricity only in accordance with the coefficient of efficiency of the steam section, not being involved in the gas turbines. The overall efficiency of the combined cycle turns out to be 56%, much less the steam section alone.
At first, the solar field was planned larger [7] but in the end it consists of a field of about 30,000 square metres (320,000 sq ft) of mirrors (the parabolic collectors) that concentrate sunlight onto 5,400 metres (17,700 ft) of pipe carrying the molten salt fluid. Molten salt is used as the heat transfer fluid in solar field and is heated to 550 °C (1,022 °F). The thermal energy is then stored in a hot tank and is used to produce high pressure steam to run steam turbines for electricity generation, reducing the consumption of fossil fuels and, as a result, enhancing the environmental performance of the combined-cycle plant. The solar collectors (the parabolic mirrors and pipes or receivers), together with a steam generator and two heat storage tanks – one cold and one hot – make up the solar portion of the system.
When the sun shines, the thermal fluid drawn from the cold tank is circulated through the network of parabolic collectors, where it is heated to a temperature of 550 °C (1,022 °F) and injected into the hot tank, where the thermal energy is stored. The fluid is then drawn from the hot reservoir to produce steam at high pressure and temperature, which is sent to Enel's nearby combined-cycle plant, where it contributes to electricity generation.
This system enables the solar field to generate steam at any time of the day and in all weather conditions until the stored thermal energy is depleted. Steam from the solar field may be used to heat the steam turbine group before start-up, or to keep it warm for a faster start-up and less mechanical stress.
The addition of the solar plant to the power station should reduce the amount of gas burnt at the plant and cut carbon dioxide emissions by 7,300 tonnes.
The solar field is relatively small, being less than half of the area dedicated solely to the conventional power plant section.
Solar thermal energy (STE) is a form of energy and a technology for harnessing solar energy to generate thermal energy for use in industry, and in the residential and commercial sectors. Solar thermal collectors are classified by the United States Energy Information Administration as low-, medium-, or high-temperature collectors. Low-temperature collectors are generally unglazed and used to heat swimming pools or to heat ventilation air. Medium-temperature collectors are also usually flat plates but are used for heating water or air for residential and commercial use.
A combined cycle power plant is an assembly of heat engines that work in tandem from the same source of heat, converting it into mechanical energy. On land, when used to make electricity the most common type is called a combined cycle gas turbine (CCGT) plant, which is a kind of gas-fired power plant. The same principle is also used for marine propulsion, where it is called a combined gas and steam (COGAS) plant. Combining two or more thermodynamic cycles improves overall efficiency, which reduces fuel costs.
The Rankine cycle is an idealized thermodynamic cycle describing the process by which certain heat engines, such as steam turbines or reciprocating steam engines, allow mechanical work to be extracted from a fluid as it moves between a heat source and heat sink. The Rankine cycle is named after William John Macquorn Rankine, a Scottish polymath professor at Glasgow University.
Cogeneration or combined heat and power (CHP) is the use of a heat engine or power station to generate electricity and useful heat at the same time.
A parabolic trough collector (PTC) is a type of solar thermal collector that is straight in one dimension and curved as a parabola in the other two, lined with a polished metal mirror. The sunlight which enters the mirror parallel to its plane of symmetry is focused along the focal line, where objects are positioned that are intended to be heated. In a solar cooker, for example, food is placed at the focal line of a trough, which is cooked when the trough is aimed so the Sun is in its plane of symmetry.
Thermal energy storage (TES) is the storage of thermal energy for later reuse. Employing widely different technologies, it allows surplus thermal energy to be stored for hours, days, or months. Scale both of storage and use vary from small to large – from individual processes to district, town, or region. Usage examples are the balancing of energy demand between daytime and nighttime, storing summer heat for winter heating, or winter cold for summer cooling. Storage media include water or ice-slush tanks, masses of native earth or bedrock accessed with heat exchangers by means of boreholes, deep aquifers contained between impermeable strata; shallow, lined pits filled with gravel and water and insulated at the top, as well as eutectic solutions and phase-change materials.
The SOLAR Project consists of the Solar One, Solar Two and Solar Tres solar thermal power plants based in the Mojave Desert, United States and Andalucía, Spain. The US Department of Energy (DOE) and a consortium of US utilities built the country's first two large-scale, demonstration solar power towers in the desert near Barstow, California.
Nevada Solar One is a concentrated solar power plant, with a nominal capacity of 64 MW and maximum steam turbine power output up to 72 MW net (75 MW gross), spread over an area of 400 acres (160 ha). The projected CO2 emissions avoided is equivalent to taking approximately 20,000 cars off the road. The project required an investment of $266 million USD, and the project officially went into operation in June 2007. Electricity production is estimated to be 134 GWh (gigawatt hours) per year.
The Andasol solar power station is a 150-megawatt (MW) concentrated solar power station and Europe's first commercial plant to use parabolic troughs. It is located near Guadix in Andalusia, Spain, and its name is a portmanteau of Andalusia and Sol. The Andasol plant uses tanks of molten salt as thermal energy storage to continue generating electricity, irrespective of whether the sun is shining or not.
In thermal engineering, the organic Rankine cycle (ORC) is a type of thermodynamic cycle. It is a variation of the Rankine cycle named for its use of an organic, high-molecular-mass fluid whose vaporization temperature is lower than that of water. The fluid allows heat recovery from lower-temperature sources such as biomass combustion, industrial waste heat, geothermal heat, solar ponds etc. The low-temperature heat is converted into useful work, that can itself be converted into electricity.
Concentrated solar power systems generate solar power by using mirrors or lenses to concentrate a large area of sunlight into a receiver. Electricity is generated when the concentrated light is converted to heat, which drives a heat engine connected to an electrical power generator or powers a thermochemical reaction.
A solar power tower, also known as 'central tower' power plant or 'heliostat' power plant, is a type of solar furnace using a tower to receive focused sunlight. It uses an array of flat, movable mirrors to focus the sun's rays upon a collector tower. Concentrating Solar Power (CSP) systems are seen as one viable solution for renewable, pollution-free energy.
Torresol Energy is a company dedicated to developing renewable energy and alternative energies, focusing on concentrated solar energy. It is based in the city of Getxo in Biscay Province (Vizcaya), in the Basque Country of northern Spain.
Martin Next Generation Solar Energy Center is the solar parabolic-trough component of an integrated solar combined cycle (ISCC) 1150 MW plant, in western Martin County, Florida, United States, just north of Indiantown. The project was built by Florida Power & Light Company (FPL). Lauren Engineers & Constructors (Abilene, TX) was the EPC contractor for the project. Its construction began in 2008 and was completed by the end of 2010.
A compact linear Fresnel reflector (CLFR) – also referred to as a concentrating linear Fresnel reflector – is a specific type of linear Fresnel reflector (LFR) technology. They are named for their similarity to a Fresnel lens, in which many small, thin lens fragments are combined to simulate a much thicker simple lens. These mirrors are capable of concentrating the sun's energy to approximately 30 times its normal intensity.
The Valle Solar Power Station is a two adjacent twin 50 MW solar thermal power plants in San José del Valle, Cádiz, Spain, near the border with the Arcos de la Frontera (north) and the Jerez de la Frontera (west) municipalities, in the comarca of the Campiña de Jerez, a county with no administrative role.
Enel Green Power S.p.A. is an Italian multinational renewable energy corporation, headquartered in Rome. The company was formed as a subsidiary of the power generation firm Enel in December 2008. It has operations in five continents generating energy from solar, geothermal, wind and hydropower sources. As of 2024, it manages a capacity of 63,8 GW, with an annual production of 75.95 TWh and has over 1300 plants worldwide.
Solar power is an important contributor to electricity generation in Italy, accounting for 8% of the total in 2017. As of 2022, the country has a total installed capacity of 22.56 GW. In 2019, Italy set a national goal of reaching 50 GW by 2030.
The Ain Beni Mathar Integrated Thermo Solar Combined Cycle Power Plant is an integrated solar combined cycle power generation plant in northeastern Morocco. It is located in the commune of Ain Bni Mathar within Jerada Province, in the Oriental Region.
Termosolar Borges is a hybrid biomass-parabolic trough solar thermal power plant which provides electricity to Spain's transmission system. It is located about 100 kilometres (62 mi) west of Barcelona, about 10 kilometres (6.2 mi) south-east of Lleida, near Les Borges Blanques, Catalonia, Spain.