Arctangent series

Last updated

In mathematics, the arctangent series, traditionally called Gregory's series, is the Taylor series expansion at the origin of the arctangent function: [1]

Contents

This series converges in the complex disk except for (where ).

It was first discovered in the 14th century by Indian mathematician Mādhava of Sangamagrāma (c.1340 – c. 1425), the founder of the Kerala school, and is described in extant works by Nīlakaṇṭha Somayāji (c. 1500) and Jyeṣṭhadeva (c. 1530). Mādhava's work was unknown in Europe, and the arctangent series was independently rediscovered by James Gregory in 1671 and by Gottfried Leibniz in 1673. [2] In recent literature the arctangent series is sometimes called the Mādhava–Gregory series to recognize Mādhava's priority (see also Mādhava series). [3]

The special case of the arctangent of is traditionally called the Leibniz formula for π, or recently sometimes the Mādhava–Leibniz formula:

The extremely slow convergence of the arctangent series for makes this formula impractical per se. Kerala-school mathematicians used additional correction terms to speed convergence. John Machin (1706) expressed as a sum of arctangents of smaller values, eventually resulting in a variety of Machin-like formulas for . Isaac Newton (1684) and other mathematicians accelerated the convergence of the series via various transformations.

Proof

The derivative of arctan x is 1 / (1 + x ); conversely, the integral of 1 / (1 + x ) is arctan x. Arctan and its derivative.png
The derivative of arctan x is 1 / (1 + x ); conversely, the integral of 1 / (1 + x ) is arctan x.

If then The derivative is

Taking the reciprocal,

This sometimes is used as a definition of the arctangent:

The Maclaurin series for is a geometric series:

One can find the Maclaurin series for by naïvely integrating term-by-term:

While this turns out correctly, integrals and infinite sums cannot always be exchanged in this manner. To prove that the integral on the left converges to the sum on the right for real can instead be written as the finite sum, [4]

Again integrating both sides,

In the limit as the integral on the right above tends to zero when because

Therefore,

Convergence

The series for and converge within the complex disk , where both functions are holomorphic. They diverge for because when , there is a pole:

When the partial sums alternate between the values and never converging to the value

However, its term-by-term integral, the series for (barely) converges when because disagrees with its series only at the point so the difference in integrals can be made arbitrarily small by taking sufficiently many terms:

Because of its exceedingly slow convergence (it takes five billion terms to obtain 10 correct decimal digits), the Leibniz formula is not a very effective practical method for computing Finding ways to get around this slow convergence has been a subject of great mathematical interest.

Accelerated series

Isaac Newton accelerated the convergence of the arctangent series in 1684 (in an unpublished work; others independently discovered the result and it was later popularized by Leonhard Euler's 1755 textbook; Euler wrote two proofs in 1779), yielding a series converging for [5]

where and

Each term of this modified series is a rational function with its poles at in the complex plane, the same place where the arctangent function has its poles. By contrast, a polynomial such as the Taylor series for arctangent forces all of its poles to infinity.

History

The earliest person to whom the series can be attributed with confidence is Mādhava of Sangamagrāma (c. 1340 – c. 1425). The original reference (as with much of Mādhava's work) is lost, but he is credited with the discovery by several of his successors in the Kerala school of astronomy and mathematics founded by him. Specific citations to the series for include Nīlakaṇṭha Somayāji's Tantrasaṅgraha (c. 1500), [6] [7] Jyeṣṭhadeva's Yuktibhāṣā (c. 1530), [8] and the Yukti-dipika commentary by Sankara Variyar, where it is given in verses 2.206 2.209. [9]

See also

Notes

  1. Boyer, Carl B.; Merzbach, Uta C. (1989) [1968]. A History of Mathematics (2nd ed.). Wiley. pp. 428–429. ISBN   9780471097631.
  2. Roy 1990.
  3. For example: Gupta 1973, Gupta 1987;
    Joseph, George Gheverghese (2011) [1st ed. 1991]. The Crest of the Peacock: Non-European Roots of Mathematics (3rd ed.). Princeton University Press. p. 428.
    Levrie, Paul (2011). "Lost and Found: An Unpublished ζ(2)-Proof". Mathematical Intelligencer. 33: 29–32. doi:10.1007/s00283-010-9179-y. S2CID   121133743.
    Other combinations of names include,
    Madhava–Gregory–Leibniz series: Benko, David; Molokach, John (2013). "The Basel Problem as a Rearrangement of Series". College Mathematics Journal. 44 (3): 171–176. doi:10.4169/college.math.j.44.3.171. S2CID   124737638.
    Madhava–Leibniz–Gregory series: Danesi, Marcel (2021). "1. Discovery of π and Its Manifestations". Pi (π) in Nature, Art, and Culture. Brill. pp. 1–30. doi:10.1163/9789004433397_002. ISBN   978-90-04-43337-3. S2CID   242107102.
    Nilakantha–Gregory series: Campbell, Paul J. (2004). "Borwein, Jonathan, and David Bailey, Mathematics by Experiment". Reviews. Mathematics Magazine. 77 (2): 163. doi:10.1080/0025570X.2004.11953245. S2CID   218541218.
    Gregory–Leibniz–Nilakantha formula: Gawrońska, Natalia; Słota, Damian; Wituła, Roman; Zielonka, Adam (2013). "Some generalizations of Gregory's power series and their applications" (PDF). Journal of Applied Mathematics and Computational Mechanics. 12 (3): 79–91. doi:10.17512/jamcm.2013.3.09.
  4. Shirali, Shailesh A. (1997). "Nīlakaṇṭha, Euler and π". Resonance. 2 (5): 29–43. doi:10.1007/BF02838013. S2CID   121433151. Also see the erratum: Shirali, Shailesh A. (1997). "Addendum to 'Nīlakaṇṭha, Euler and π'". Resonance. 2 (11): 112. doi: 10.1007/BF02862651 .
  5. Roy, Ranjan (2021) [1st ed. 2011]. Series and Products in the Development of Mathematics. Vol. 1 (2 ed.). Cambridge University Press. pp. 215–216, 219–220.
    Sandifer, Ed (2009). "Estimating π" (PDF). How Euler Did It. Reprinted in How Euler Did Even More. Mathematical Association of America. 2014. pp. 109–118.
    Newton, Isaac (1971). Whiteside, Derek Thomas (ed.). The Mathematical Papers of Isaac Newton. Vol. 4, 1674–1684. Cambridge University Press. pp. 526–653.
    Euler, Leonhard (1755). Institutiones Calculi Differentialis (in Latin). Academiae Imperialis Scientiarium Petropolitanae. §2.2.30 p. 318. E 212. Chapters 1–9 translated by John D. Blanton (2000) Foundations of Differential Calculus. Springer. Later translated by Ian Bruce (2011). Euler's Institutionum Calculi Differentialis. 17centurymaths.com. (English translation of §2.2)
    Euler, Leonhard (1798) [written 1779]. "Investigatio quarundam serierum, quae ad rationem peripheriae circuli ad diametrum vero proxime definiendam maxime sunt accommodatae". Nova acta academiae scientiarum Petropolitinae. 11: 133–149, 167–168. E 705.
    Hwang Chien-Lih (2005), "An elementary derivation of Euler's series for the arctangent function", The Mathematical Gazette, 89 (516): 469–470, doi:10.1017/S0025557200178404
  6. K.V. Sarma (ed.). "Tantrasamgraha with English translation" (PDF) (in Sanskrit and English). Translated by V.S. Narasimhan. Indian National Academy of Science. p. 48. Archived from the original (PDF) on 9 March 2012. Retrieved 17 January 2010.
  7. Tantrasamgraha, ed. K.V. Sarma, trans. V. S. Narasimhan in the Indian Journal of History of Science, issue starting Vol. 33, No. 1 of March 1998
  8. K. V. Sarma & S Hariharan (ed.). "A book on rationales in Indian Mathematics and Astronomy—An analytic appraisal" (PDF). Yuktibhāṣā of Jyeṣṭhadeva. Archived from the original (PDF) on 28 September 2006. Retrieved 2006-07-09.
  9. C.K. Raju (2007). Cultural Foundations of Mathematics : Nature of Mathematical Proof and the Transmission of the Calculus from India to Europe in the 16 c. CE. History of Science, Philosophy and Culture in Indian Civilisation. Vol. X Part 4. New Delhi: Centre for Studies in Civilisation. p. 231. ISBN   978-81-317-0871-2.

Related Research Articles

<span class="mw-page-title-main">Gamma function</span> Extension of the factorial function

In mathematics, the gamma function is one commonly used extension of the factorial function to complex numbers. The gamma function is defined for all complex numbers except the non-positive integers. For every positive integer n,

In mathematics, a series is, roughly speaking, the operation of adding infinitely many quantities, one after the other, to a given starting quantity. The study of series is a major part of calculus and its generalization, mathematical analysis. Series are used in most areas of mathematics, even for studying finite structures through generating functions. In addition to their ubiquity in mathematics, infinite series are also widely used in other quantitative disciplines such as physics, computer science, statistics and finance.

The number π is a mathematical constant that is the ratio of a circle's circumference to its diameter, approximately equal to 3.14159. The number π appears in many formulae across mathematics and physics. It is an irrational number, meaning that it cannot be expressed exactly as a ratio of two integers, although fractions such as are commonly used to approximate it. Consequently, its decimal representation never ends, nor enters a permanently repeating pattern. It is a transcendental number, meaning that it cannot be a solution of an equation involving only finite sums, products, powers, and integers. The transcendence of π implies that it is impossible to solve the ancient challenge of squaring the circle with a compass and straightedge. The decimal digits of π appear to be randomly distributed, but no proof of this conjecture has been found.

<span class="mw-page-title-main">Taylor series</span> Mathematical approximation of a function

In mathematics, the Taylor series or Taylor expansion of a function is an infinite sum of terms that are expressed in terms of the function's derivatives at a single point. For most common functions, the function and the sum of its Taylor series are equal near this point. Taylor series are named after Brook Taylor, who introduced them in 1715. A Taylor series is also called a Maclaurin series when 0 is the point where the derivatives are considered, after Colin Maclaurin, who made extensive use of this special case of Taylor series in the 18th century.

<span class="mw-page-title-main">Fourier series</span> Decomposition of periodic functions into sums of simpler sinusoidal forms

A Fourier series is an expansion of a periodic function into a sum of trigonometric functions. The Fourier series is an example of a trigonometric series, but not all trigonometric series are Fourier series. By expressing a function as a sum of sines and cosines, many problems involving the function become easier to analyze because trigonometric functions are well understood. For example, Fourier series were first used by Joseph Fourier to find solutions to the heat equation. This application is possible because the derivatives of trigonometric functions fall into simple patterns. Fourier series cannot be used to approximate arbitrary functions, because most functions have infinitely many terms in their Fourier series, and the series do not always converge. Well-behaved functions, for example smooth functions, have Fourier series that converge to the original function. The coefficients of the Fourier series are determined by integrals of the function multiplied by trigonometric functions, described in Common forms of the Fourier series below.

In mathematics, a power series is an infinite series of the form

<span class="mw-page-title-main">Inverse trigonometric functions</span> Inverse functions of sin, cos, tan, etc.

In mathematics, the inverse trigonometric functions are the inverse functions of the trigonometric functions. Specifically, they are the inverses of the sine, cosine, tangent, cotangent, secant, and cosecant functions, and are used to obtain an angle from any of the angle's trigonometric ratios. Inverse trigonometric functions are widely used in engineering, navigation, physics, and geometry.

The Basel problem is a problem in mathematical analysis with relevance to number theory, concerning an infinite sum of inverse squares. It was first posed by Pietro Mengoli in 1650 and solved by Leonhard Euler in 1734, and read on 5 December 1735 in The Saint Petersburg Academy of Sciences. Since the problem had withstood the attacks of the leading mathematicians of the day, Euler's solution brought him immediate fame when he was twenty-eight. Euler generalised the problem considerably, and his ideas were taken up more than a century later by Bernhard Riemann in his seminal 1859 paper "On the Number of Primes Less Than a Given Magnitude", in which he defined his zeta function and proved its basic properties. The problem is named after Basel, hometown of Euler as well as of the Bernoulli family who unsuccessfully attacked the problem.

In mathematics, an alternating series is an infinite series of the form

In mathematics, the Leibniz formula for π, named after Gottfried Wilhelm Leibniz, states that

<span class="mw-page-title-main">Wallis product</span> Infinite product for pi

In mathematics, the Wallis product for π, published in 1656 by John Wallis, states that

<span class="mw-page-title-main">Lemniscate constant</span> Ratio of the perimeter of Bernoullis lemniscate to its diameter

In mathematics, the lemniscate constantϖ is a transcendental mathematical constant that is the ratio of the perimeter of Bernoulli's lemniscate to its diameter, analogous to the definition of π for the circle. Equivalently, the perimeter of the lemniscate is 2ϖ. The lemniscate constant is closely related to the lemniscate elliptic functions and approximately equal to 2.62205755. The symbol ϖ is a cursive variant of π; see Pi § Variant pi.

In mathematics, Machin-like formulas are a popular technique for computing π to a large number of digits. They are generalizations of John Machin's formula from 1706:

<span class="mw-page-title-main">Kerala school of astronomy and mathematics</span> Hindu astronomy, mathematics, science school in India

The Kerala school of astronomy and mathematics or the Kerala school was a school of mathematics and astronomy founded by Madhava of Sangamagrama in Tirur, Malappuram, Kerala, India, which included among its members: Parameshvara, Neelakanta Somayaji, Jyeshtadeva, Achyuta Pisharati, Melpathur Narayana Bhattathiri and Achyuta Panikkar. The school flourished between the 14th and 16th centuries and its original discoveries seem to have ended with Narayana Bhattathiri (1559–1632). In attempting to solve astronomical problems, the Kerala school independently discovered a number of important mathematical concepts. Their most important results—series expansion for trigonometric functions—were described in Sanskrit verse in a book by Neelakanta called Tantrasangraha, and again in a commentary on this work, called Tantrasangraha-vakhya, of unknown authorship. The theorems were stated without proof, but proofs for the series for sine, cosine, and inverse tangent were provided a century later in the work Yuktibhasa, written in Malayalam, by Jyesthadeva, and also in a commentary on Tantrasangraha.

The inverse tangent integral is a special function, defined by:

Approximations of <span class="texhtml mvar" style="font-style:italic;">π</span> Varying methods used to calculate pi

Approximations for the mathematical constant pi in the history of mathematics reached an accuracy within 0.04% of the true value before the beginning of the Common Era. In Chinese mathematics, this was improved to approximations correct to what corresponds to about seven decimal digits by the 5th century.

Ramanujan summation is a technique invented by the mathematician Srinivasa Ramanujan for assigning a value to divergent infinite series. Although the Ramanujan summation of a divergent series is not a sum in the traditional sense, it has properties that make it mathematically useful in the study of divergent infinite series, for which conventional summation is undefined.

In mathematics, a Madhava series is one of the three Taylor series expansions for the sine, cosine, and arctangent functions discovered in 14th or 15th century in Kerala, India by the mathematician and astronomer Madhava of Sangamagrama or his followers in the Kerala school of astronomy and mathematics. Using modern notation, these series are:

References