In mathematics, a series acceleration method is any one of a collection of sequence transformations for improving the rate of convergence of a series. Techniques for series acceleration are often applied in numerical analysis, where they are used to improve the speed of numerical integration. Series acceleration techniques may also be used, for example, to obtain a variety of identities on special functions. Thus, the Euler transform applied to the hypergeometric series gives some of the classic, well-known hypergeometric series identities.
Given an infinite series with a sequence of partial sums
having a limit
an accelerated series is an infinite series with a second sequence of partial sums
which asymptotically converges faster to than the original sequence of partial sums would:
A series acceleration method is a sequence transformation that transforms the convergent sequences of partial sums of a series into more quickly convergent sequences of partial sums of an accelerated series with the same limit. If a series acceleration method is applied to a divergent series then the proper limit of the series is undefined, but the sequence transformation can still act usefully as an extrapolation method to an antilimit of the series.
The mappings from the original to the transformed series may be linear sequence transformations or non-linear sequence transformations. In general, the non-linear sequence transformations tend to be more powerful.
Two classical techniques for series acceleration are Euler's transformation of series [1] and Kummer's transformation of series. [2] A variety of much more rapidly convergent and special-case tools have been developed in the 20th century, including Richardson extrapolation, introduced by Lewis Fry Richardson in the early 20th century but also known and used by Katahiro Takebe in 1722; the Aitken delta-squared process, introduced by Alexander Aitken in 1926 but also known and used by Takakazu Seki in the 18th century; the epsilon method given by Peter Wynn in 1956; the Levin u-transform; and the Wilf-Zeilberger-Ekhad method or WZ method.
For alternating series, several powerful techniques, offering convergence rates from all the way to for a summation of terms, are described by Cohen et al. [3]
A basic example of a linear sequence transformation, offering improved convergence, is Euler's transform. It is intended to be applied to an alternating series; it is given by
where is the forward difference operator, for which one has the formula
If the original series, on the left hand side, is only slowly converging, the forward differences will tend to become small quite rapidly; the additional power of two further improves the rate at which the right hand side converges.
A particularly efficient numerical implementation of the Euler transform is the van Wijngaarden transformation. [4]
A series
can be written as , where the function f is defined as
The function can have singularities in the complex plane (branch point singularities, poles or essential singularities), which limit the radius of convergence of the series. If the point is close to or on the boundary of the disk of convergence, the series for will converge very slowly. One can then improve the convergence of the series by means of a conformal mapping that moves the singularities such that the point that is mapped to ends up deeper in the new disk of convergence.
The conformal transform needs to be chosen such that , and one usually chooses a function that has a finite derivative at w = 0. One can assume that without loss of generality, as one can always rescale w to redefine . We then consider the function
Since , we have . We can obtain the series expansion of by putting in the series expansion of because ; the first terms of the series expansion for will yield the first terms of the series expansion for if . Putting in that series expansion will thus yield a series such that if it converges, it will converge to the same value as the original series.
Examples of such nonlinear sequence transformations are Padé approximants, the Shanks transformation, and Levin-type sequence transformations.
Especially nonlinear sequence transformations often provide powerful numerical methods for the summation of divergent series or asymptotic series that arise for instance in perturbation theory, and therefore may be used as effective extrapolation methods.
A simple nonlinear sequence transformation is the Aitken extrapolation or delta-squared method,
defined by
This transformation is commonly used to improve the rate of convergence of a slowly converging sequence; heuristically, it eliminates the largest part of the absolute error.
In mathematics, a series is, roughly speaking, an addition of infinitely many quantities, one after the other. The study of series is a major part of calculus and its generalization, mathematical analysis. Series are used in most areas of mathematics, even for studying finite structures through generating functions. The mathematical properties of infinite series make them widely applicable in other quantitative disciplines such as physics, computer science, statistics and finance.
In complex analysis, the Riemann mapping theorem states that if is a non-empty simply connected open subset of the complex number plane which is not all of , then there exists a biholomorphic mapping from onto the open unit disk
A wavelet is a wave-like oscillation with an amplitude that begins at zero, increases or decreases, and then returns to zero one or more times. Wavelets are termed a "brief oscillation". A taxonomy of wavelets has been established, based on the number and direction of its pulses. Wavelets are imbued with specific properties that make them useful for signal processing.
Distributions, also known as Schwartz distributions or generalized functions, are objects that generalize the classical notion of functions in mathematical analysis. Distributions make it possible to differentiate functions whose derivatives do not exist in the classical sense. In particular, any locally integrable function has a distributional derivative.
In mathematics, a formal series is an infinite sum that is considered independently from any notion of convergence, and can be manipulated with the usual algebraic operations on series.
In mathematical physics, a lattice model is a mathematical model of a physical system that is defined on a lattice, as opposed to a continuum, such as the continuum of space or spacetime. Lattice models originally occurred in the context of condensed matter physics, where the atoms of a crystal automatically form a lattice. Currently, lattice models are quite popular in theoretical physics, for many reasons. Some models are exactly solvable, and thus offer insight into physics beyond what can be learned from perturbation theory. Lattice models are also ideal for study by the methods of computational physics, as the discretization of any continuum model automatically turns it into a lattice model. The exact solution to many of these models includes the presence of solitons. Techniques for solving these include the inverse scattering transform and the method of Lax pairs, the Yang–Baxter equation and quantum groups. The solution of these models has given insights into the nature of phase transitions, magnetization and scaling behaviour, as well as insights into the nature of quantum field theory. Physical lattice models frequently occur as an approximation to a continuum theory, either to give an ultraviolet cutoff to the theory to prevent divergences or to perform numerical computations. An example of a continuum theory that is widely studied by lattice models is the QCD lattice model, a discretization of quantum chromodynamics. However, digital physics considers nature fundamentally discrete at the Planck scale, which imposes upper limit to the density of information, aka Holographic principle. More generally, lattice gauge theory and lattice field theory are areas of study. Lattice models are also used to simulate the structure and dynamics of polymers.
In mathematics, extrapolation is a type of estimation, beyond the original observation range, of the value of a variable on the basis of its relationship with another variable. It is similar to interpolation, which produces estimates between known observations, but extrapolation is subject to greater uncertainty and a higher risk of producing meaningless results. Extrapolation may also mean extension of a method, assuming similar methods will be applicable. Extrapolation may also apply to human experience to project, extend, or expand known experience into an area not known or previously experienced so as to arrive at a knowledge of the unknown. The extrapolation method can be applied in the interior reconstruction problem.
In mathematics, an asymptotic expansion, asymptotic series or Poincaré expansion is a formal series of functions which has the property that truncating the series after a finite number of terms provides an approximation to a given function as the argument of the function tends towards a particular, often infinite, point. Investigations by Dingle (1973) revealed that the divergent part of an asymptotic expansion is latently meaningful, i.e. contains information about the exact value of the expanded function.
In the theory of stochastic processes, the Karhunen–Loève theorem, also known as the Kosambi–Karhunen–Loève theorem states that a stochastic process can be represented as an infinite linear combination of orthogonal functions, analogous to a Fourier series representation of a function on a bounded interval. The transformation is also known as Hotelling transform and eigenvector transform, and is closely related to principal component analysis (PCA) technique widely used in image processing and in data analysis in many fields.
In mathematics, a divergent series is an infinite series that is not convergent, meaning that the infinite sequence of the partial sums of the series does not have a finite limit.
In mathematical analysis, particularly numerical analysis, the rate of convergence and order of convergence of a sequence that converges to a limit are any of several characterizations of how quickly that sequence approaches its limit. These are broadly divided into rates and orders of convergence that describe how quickly a sequence further approaches its limit once it is already close to it, called asymptotic rates and orders of convergence, and those that describe how quickly sequences approach their limits from starting points that are not necessarily close to their limits, called non-asymptotic rates and orders of convergence.
In mathematics, the Lerch zeta function, sometimes called the Hurwitz–Lerch zeta function, is a special function that generalizes the Hurwitz zeta function and the polylogarithm. It is named after Czech mathematician Mathias Lerch, who published a paper about the function in 1887.
In mathematics, a stiff equation is a differential equation for which certain numerical methods for solving the equation are numerically unstable, unless the step size is taken to be extremely small. It has proven difficult to formulate a precise definition of stiffness, but the main idea is that the equation includes some terms that can lead to rapid variation in the solution.
In mathematics, a sequence transformation is an operator acting on a given space of sequences. Sequence transformations include linear mappings such as discrete convolution with another sequence and resummation of a sequence and nonlinear mappings, more generally. They are commonly used for series acceleration, that is, for improving the rate of convergence of a slowly convergent sequence or series. Sequence transformations are also commonly used to compute the antilimit of a divergent series numerically, and are used in conjunction with extrapolation methods.
In mathematics, a Padé approximant is the "best" approximation of a function near a specific point by a rational function of given order. Under this technique, the approximant's power series agrees with the power series of the function it is approximating. The technique was developed around 1890 by Henri Padé, but goes back to Georg Frobenius, who introduced the idea and investigated the features of rational approximations of power series.
In mathematics, the Nørlund–Rice integral, sometimes called Rice's method, relates the nth forward difference of a function to a line integral on the complex plane. It commonly appears in the theory of finite differences and has also been applied in computer science and graph theory to estimate binary tree lengths. It is named in honour of Niels Erik Nørlund and Stephen O. Rice. Nørlund's contribution was to define the integral; Rice's contribution was to demonstrate its utility by applying saddle-point techniques to its evaluation.
In numerical analysis, the Shanks transformation is a non-linear series acceleration method to increase the rate of convergence of a sequence. This method is named after Daniel Shanks, who rediscovered this sequence transformation in 1955. It was first derived and published by R. Schmidt in 1941.
Peter Wynn (1931—2017) was an English mathematician. His main achievements concern approximation theory – in particular the theory of Padé approximants – and its application in numerical methods for improving the rate of convergence of sequences of real numbers.
In mathematics, infinite compositions of analytic functions (ICAF) offer alternative formulations of analytic continued fractions, series, products and other infinite expansions, and the theory evolving from such compositions may shed light on the convergence/divergence of these expansions. Some functions can actually be expanded directly as infinite compositions. In addition, it is possible to use ICAF to evaluate solutions of fixed point equations involving infinite expansions. Complex dynamics offers another venue for iteration of systems of functions rather than a single function. For infinite compositions of a single function see Iterated function. For compositions of a finite number of functions, useful in fractal theory, see Iterated function system.
Michela Redivo-Zaglia is an Italian numerical analyst known for her works on numerical linear algebra and on extrapolation-based acceleration of numerical methods. She is an associate professor in the department of mathematics at the University of Padua.