Argininosuccinate synthetase 1

Last updated
ASS1
Protein ASS1 PDB 2nz2.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases ASS1 , ASS, CTLN1, Argininosuccinate synthetase 1, argininosuccinate synthase 1
External IDs OMIM: 603470; MGI: 88090; HomoloGene: 6899; GeneCards: ASS1; OMA:ASS1 - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_000050
NM_054012

NM_007494

RefSeq (protein)

NP_000041
NP_446464

NP_031520

Location (UCSC) Chr 9: 130.44 – 130.5 Mb Chr 2: 31.36 – 31.41 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Argininosuccinate synthetase is an enzyme that in humans is encoded by the ASS1 gene. [5] [6] [7]

Contents

The protein encoded by this gene catalyzes the penultimate step of the arginine biosynthetic pathway. There are approximately 10 to 14 copies of this gene including the pseudogenes scattered across the human genome, among which the one located on chromosome 9 appears to be the only functional gene for argininosuccinate synthetase. Two transcript variants encoding the same protein have been found for this gene. [7]

Clinical significance

Mutations in the chromosome 9 copy of ASS cause citrullinemia. [5]

Arginine is considered a non-essential amino acid since normal cells can synthesize it from citrulline and aspartate using the enzymes argininosuccinate synthase 1 (ASS1) and argininosuccinate lyase (ASL). Consequently, depleting arginine can be an effective therapeutic approach. Notably, over 70% of tumors show reduced ASS1 transcription, making these cancer cells reliant on external sources of arginine, which forms the basis of arginine-deprivation therapy. [8]

The investigational drug pegargiminase that degrades arginine is currently in trials for the treatment of ASS1 deficient cancers. [9]

Related Research Articles

<span class="mw-page-title-main">UBE3A</span> Protein-coding gene in Homo sapiens

Ubiquitin-protein ligase E3A (UBE3A) also known as E6AP ubiquitin-protein ligase (E6AP) is an enzyme that in humans is encoded by the UBE3A gene. This enzyme is involved in targeting proteins for degradation within cells.

<span class="mw-page-title-main">Argininosuccinate synthase</span> Enzyme

Argininosuccinate synthase or synthetase is an enzyme that catalyzes the synthesis of argininosuccinate from citrulline and aspartate. In humans, argininosuccinate synthase is encoded by the ASS gene located on chromosome 9.

<span class="mw-page-title-main">Argininosuccinate lyase</span> Mammalian protein found in Homo sapiens

The enzyme argininosuccinate lyase (EC 4.3.2.1, ASL, argininosuccinase; systematic name 2-(N ω-L-arginino)succinate arginine-lyase (fumarate-forming)) catalyzes the reversible breakdown of argininosuccinate:

<span class="mw-page-title-main">Citrin</span> Mammalian protein found in humans

Citrin, also known as solute carrier family 25, member 13 (citrin) or SLC25A13, is a protein which in humans is encoded by the SLC25A13 gene.

<span class="mw-page-title-main">H3F3A</span> Gene for histone H3.3 protein

Histone H3.3 is a protein that in humans is encoded by the H3F3A and H3F3B genes. It plays an essential role in maintaining genome integrity during mammalian development.

<span class="mw-page-title-main">CENPF</span> Centromere- and microtubule-associated protein

Centromere protein F is a protein that in humans is encoded by the CENPF gene. It is involved in chromosome segregation during cell division. It also has a role in the orientation of microtubules to form cellular cilia.

<span class="mw-page-title-main">ARID1A</span> Protein-coding gene in humans

AT-rich interactive domain-containing protein 1A is a protein that in humans is encoded by the ARID1A gene.

<span class="mw-page-title-main">Mesoderm-specific transcript homolog protein</span> Mammalian protein found in Homo sapiens

Mesoderm-specific transcript homolog protein is a protein that in humans is encoded by the MEST gene.

<span class="mw-page-title-main">MTHFD1</span>

Methylenetetrahydrofolate dehydrogenase, cyclohydrolase and formyltetrahydrofolate synthetase 1 (MTHFD1) is a gene located in humans on chromosome 14 that encodes a protein, C-1-tetrahydrofolate synthase, cytoplasmic also known as C1-THF synthase, with three distinct enzymatic activities.

<span class="mw-page-title-main">EPRS</span> Protein-coding gene in the species Homo sapiens

Bifunctional aminoacyl-tRNA synthetase is an enzyme that in humans is encoded by the EPRS gene.

<span class="mw-page-title-main">ST7</span> Human protein and coding gene

Suppressor of tumorigenicity protein 7 is a protein that in humans is encoded by the ST7 gene. ST7 orthologs have been identified in all mammals for which complete genome data are available.

<span class="mw-page-title-main">POMGNT1</span> Human gene

Protein O-linked-mannose beta-1,2-N-acetylglucosaminyltransferase 1 is an enzyme that in humans is encoded by the POMGNT1 gene.

<span class="mw-page-title-main">Leucyl-tRNA synthetase</span> Protein-coding gene in the species Homo sapiens

Leucyl-tRNA synthetase, cytoplasmic is an enzyme that in humans is encoded by the LARS gene.

<span class="mw-page-title-main">REV3L</span> Protein-coding gene in the species Homo sapiens

Protein reversionless 3-like (REV3L) also known as DNA polymerase zeta catalytic subunit (POLZ) is an enzyme that in humans is encoded by the REV3L gene.

<span class="mw-page-title-main">LARS2</span> Protein-coding gene in the species Homo sapiens

Probable leucyl-tRNA synthetase, mitochondrial is an enzyme that in humans is encoded by the LARS2 gene.

<span class="mw-page-title-main">Calcium-binding mitochondrial carrier protein Aralar1</span> Protein-coding gene in the species Homo sapiens

Calcium-binding mitochondrial carrier protein Aralar1 is a protein that in humans is encoded by the SLC25A12 gene. Aralar is an integral membrane protein located in the inner mitochondrial membrane. Its primary function as an antiporter is the transport of cytoplasmic glutamate with mitochondrial aspartate across the inner mitochondrial membrane, dependent on the binding of one calcium ion. Mutations in this gene cause early infantile epileptic encephalopathy 39 (EIEE39), symptomized by global hypomyelination of the central nervous system, refractory seizures, and neurodevelopmental impairment. This gene has connections to autism.

<span class="mw-page-title-main">OASL</span> Protein-coding gene in the species Homo sapiens

59 kDa 2'-5'-oligoadenylate synthetase-like protein is an enzyme that in humans is encoded by the OASL gene.

<span class="mw-page-title-main">FARS2</span> Protein-coding gene in the species Homo sapiens

Phenylalanyl-tRNA synthetase, mitochondrial (FARS2) is an enzyme that in humans is encoded by the FARS2 gene. This protein encoded by FARS2 localizes to the mitochondrion and plays a role in mitochondrial protein translation. Mutations in this gene have been associated with combined oxidative phosphorylation deficiency 14, also known as Alpers encephalopathy, as well as spastic paraplegia 77 and infantile-onset epilepsy and cytochrome c oxidase deficiency.

<span class="mw-page-title-main">CTPS2</span> Protein-coding gene in humans

CTP synthase 2 is an enzyme that in humans is encoded by the CTPS2 gene.

<span class="mw-page-title-main">ARMET</span> Protein-coding gene in the species Homo sapiens

Arginine-rich, mutated in early-stage tumors (ARMET), arginine-rich protein (ARP), or mesencephalic astrocyte-derived neurotrophic factor (MANF) is a protein that in humans is encoded by the MANF housekeeping gene.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000130707 Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000076441 Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. 1 2 Beaudet AL, O'Brien WE, Bock HG, Freytag SO, Su TS (Mar 1986). "The Human Argininosuccinate Synthetase Locus and Citrullinemia". Advances in Human Genetics 15. Vol. 15. pp. 161–96, 291–2. doi:10.1007/978-1-4615-8356-1_3. ISBN   978-1-4615-8358-5. PMID   3513483.
  6. Carritt B, Goldfarb PS, Hooper ML, Slack C (April 1977). "Chromosome assignment of a human gene for argininosuccinate synthetase expression in Chinese hamsterxhuman somatic cell hybrids". Experimental Cell Research. 106 (1): 71–78. doi:10.1016/0014-4827(77)90242-7. PMID   852520.
  7. 1 2 "Entrez Gene: ASS1 argininosuccinate synthetase 1".
  8. Chen CL, Hsu SC, Ann DK, Yen Y, Kung HJ (July 2021). "Arginine Signaling and Cancer Metabolism". Cancers. 13 (14): 3541. doi: 10.3390/cancers13143541 . PMC   8306961 . PMID   34298755.
  9. Field GC, Pavlyk I, Szlosarek PW (February 2023). "Bench-to-Bedside Studies of Arginine Deprivation in Cancer". Molecules. 28 (5). Basel, Switzerland: 2150. doi: 10.3390/molecules28052150 . PMC   10005060 . PMID   36903394.

Further reading

Further reading