Asset tracking

Last updated

Asset tracking refers to the method of tracking physical assets, either by scanning barcode labels attached to the assets or by using tags using GPS, BLE, LoRa, or RFID which broadcast their location. These technologies can also be used for indoor tracking of persons wearing a tag.

Contents

RFID

'Passive' RFID tags broadcast their location but have limited transmission range (typically a few meters). Longer-range "smart tags" use 'active' RFID -where a radio transmitter is powered by a battery and can transmit up to 2000 meters (6,600 feet) in optimum conditions. RFID-based Asset Tracking requires an infrastructure to be put in place before the whereabouts of tags may be ascertained. An asset tracking system can record the location and usage of the assets and generate various reports. Unlike traditional barcode labels, RFID tags can be read faster and have higher durability. RFID is integrated in smart warehousing to track inventory and other assets. Realtime information of the tagged objects are obtained including the location, activity and other characteristics. [1]

Barcodes

Assets can be tracked via manually scanning barcodes such as QR codes. QR codes can be scanned using smartphones with cameras and dedicated apps, as well as with barcode readers.

NFC

Latest trend in asset tracking is using NFC. NFC technology simplifies tracking of assets by tapping the assets and getting the details. This is an advantage for tracking critical assets where user needs to see the condition of the asset to be tracked.

GPS asset tracking

Assets may also be tracked globally using devices which combine the GPS system and mobile phone and/or satellite phone technology. Such devices are known as GPS asset trackers and are different from other GPS tracking units in that they rely on an internal battery for power rather than being hard-wired to a vehicle's battery. The frequency with which the position of the device must be known or available dictates the quality, size or type of GPS asset tracker required. It is common for asset tracking devices to fail due to Faraday cage effects as a huge proportion of the worlds assets are moved via intermodal containers. However modern tracking technology has now seen advances in signal transmission that allows enough signal strength reception from the GPS satellite system which can then be reported via GPRS to terrestrial networks.

Mobile phones are personal devices. Asset tracking apps for smart devices had been used as a means of personal tracking and rescues. For example, Find My iPhone is an app and service provided by Apple; it was used in rescuing a missing person in deep ravine from a car accident [2] after other attempts failed. There are also tracking apps combined with viewing functions used as a surveillance similar to FAA's Automatic dependent surveillance – broadcast (ADS-B).

Wi-fi, IR, LoRa and Bluetooth

For indoor asset tracking Wi-fi combined with another technology like IR has been used. [3] Bluetooth and LoRa technology have also been used, and may provide more accuracy even if these radio technologies weren't primarily developed for location tracking. In order to position an asset via Bluetooth or LoRa, which is a basic requirement for asset tracking, the RSSI and TDOA is used to calculate a distance to the signaling transmitter from the signal strength. The principles for position determination are trilateration, triangulation and fingerprinting. [4] LoRa can be used for both indoor and outdoor tracking as LoRa signals can travel longer distances (kilometers).

See also

Related Research Articles

Location-based service (LBS) is a general term denoting software services which use geographic data and information to provide services or information to users. LBS can be used in a variety of contexts, such as health, indoor object search, entertainment, work, personal life, etc. Commonly used examples of location-based services include navigation software, social networking services, location-based advertising, and tracking systems. LBS can also include mobile commerce when taking the form of coupons or advertising directed at customers based on their current location. LBS also includes personalized weather services and even location-based games.

Radio-frequency identification (RFID) uses electromagnetic fields to automatically identify and track tags attached to objects. An RFID system consists of a tiny radio transponder, a radio receiver and transmitter. When triggered by an electromagnetic interrogation pulse from a nearby RFID reader device, the tag transmits digital data, usually an identifying inventory number, back to the reader. This number can be used to track inventory goods.

<span class="mw-page-title-main">Barcode reader</span> Electronic device

A barcode reader or barcode scanner is an optical scanner that can read printed barcodes, decode the data contained in the barcode to a computer. Like a flatbed scanner, it consists of a light source, a lens and a light sensor for translating optical impulses into electrical signals. Additionally, nearly all barcode readers contain decoder circuitry that can analyse the barcode's image data provided by the sensor and send the barcode's content to the scanner's output port.

Automatic vehicle location is a means for automatically determining and transmitting the geographic location of a vehicle. This vehicle location data, from one or more vehicles, may then be collected by a vehicle tracking system to manage an overview of vehicle travel. As of 2017, GPS technology has reached the point of having the transmitting device be smaller than the size of a human thumb, able to run 6 months or more between battery charges, easy to communicate with smartphones — all for less than $20 USD.

Object hyperlinking is a term that refers to extending the Internet to objects and locations in the real world. Object hyperlinking aims to extend the Internet to the physical world by attaching tags with URLs to tangible objects or locations. These object tags can then be read by a wireless mobile device and information about objects and locations retrieved and displayed.

<span class="mw-page-title-main">Tracking system</span>

A tracking system, also known as a locating system, is used for the observing of persons or objects on the move and supplying a timely ordered sequence of location data for further processing.

Proximity marketing is the localized wireless distribution of advertising content associated with a particular place. Transmissions can be received by individuals in that location who wish to receive them and have the necessary equipment to do so.

A guard tour patrol system is a system for logging the rounds of employees in a variety of situations such as security guards patrolling property, technicians monitoring climate-controlled environments, and correctional officers checking prisoner living areas. It helps ensure that the employee makes their appointed rounds at the correct intervals and can offer a record for legal or insurance reasons. Such systems have existed for many years using mechanical watchclock-based systems. Computerized systems were first introduced in Europe in the early 1980s, and in North America in 1986. Modern systems are based on handheld data loggers and RFID sensors. The system provides a means to record the time when the employee reaches certain points on their tour. Checkpoints or watchstations are commonly placed at the extreme ends of the tour route and at critical points such as vaults, specimen refrigerators, vital equipment, and access points. Some systems are set so that the interval between stations is timed so if the employee fails to reach each point within a set time, other staff are dispatched to ensure the employee's well-being. An example of a modern set-up might work as follows: the employee carries a portable electronic sensor (PES) or electronic data collector which is activated at each checkpoint. Checkpoints can consist of iButton semiconductors, magnetic strips, proximity microchips such as RFIDs or NFC- or optical barcodes. The data collector stores the serial number of the checkpoint with the date and time. Later, the information is downloaded from the collector into a computer where the checkpoint's serial number will have an assigned location. Data collectors can also be programmed to ignore duplicate checkpoint activations that occur sequentially or within a certain time period. Computer software used to compile the data from the collector can print out summaries that pinpoint missed checkpoints or patrols without the operator having to review all the data collected. Because devices can be subject to misuse, some have built-in microwave, g-force, and voltage detection.

<span class="mw-page-title-main">High Capacity Color Barcode</span>

High Capacity Color Barcode (HCCB) is a technology developed by Microsoft for encoding data in a 2D "barcode" using clusters of colored triangles instead of the square pixels conventionally associated with 2D barcodes or QR codes. Data density is increased by using a palette of 4 or 8 colors for the triangles, although HCCB also permits the use of black and white when necessary. It has been licensed by the ISAN International Agency for use in its International Standard Audiovisual Number standard, and serves as the basis for the Microsoft Tag mobile tagging application.

<span class="mw-page-title-main">Indoor positioning system</span> Network of devices used to wirelessly locate objects inside a building

An indoor positioning system (IPS) is a network of devices used to locate people or objects where GPS and other satellite technologies lack precision or fail entirely, such as inside multistory buildings, airports, alleys, parking garages, and underground locations.

Mobile tagging is the process of providing data read from tags for display on mobile devices, commonly encoded in a two-dimensional barcode, using the camera of a camera phone as the reader device. The contents of the tag code is usually a URL for information addressed and accessible through Internet.

<span class="mw-page-title-main">Key finder</span> Electronic device to locate lost objects

Key finders, also known as keyfinders, key locators, or electronic finders, are small electronic devices fitted to objects to locate them when misplaced or stolen, such as keys, luggage, purses, wallets, pets, laptop computers, toddlers, cellphones, equipment, or tools, and to transmit alerts, e.g., that one's restaurant table is ready or a nurse is needed. Some key finders beep or flash lights on demand.

Real-time locating systems (RTLS), also known as real-time tracking systems, are used to automatically identify and track the location of objects or people in real time, usually within a building or other contained area. Wireless RTLS tags are attached to objects or worn by people, and in most RTLS, fixed reference points receive wireless signals from tags to determine their location. Examples of real-time locating systems include tracking automobiles through an assembly line, locating pallets of merchandise in a warehouse, or finding medical equipment in a hospital.

DASH7 Alliance Protocol (D7A) is an open-source wireless sensor and actuator network protocol, which operates in the 433 MHz, 868 MHz and 915 MHz unlicensed ISM band/SRD band. DASH7 provides multi-year battery life, range of up to 2 km, low latency for connecting with moving things, a very small open-source protocol stack, AES 128-bit shared-key encryption support, and data transfer of up to 167 kbit/s. The DASH7 Alliance Protocol is the name of the technology promoted by the non-profit consortium called the DASH7 Alliance.

<span class="mw-page-title-main">TecTile</span> NFC application developed by Samsung for use with smartphones

TecTiles are a near field communication (NFC) application, developed by Samsung, for use with mobile smartphone devices.

iBeacon Indoor positioning system

iBeacon is a protocol developed by Apple and introduced at the Apple Worldwide Developers Conference in 2013. Various vendors have since made iBeacon-compatible hardware transmitters – typically called beacons – a class of Bluetooth Low Energy (BLE) devices that broadcast their identifier to nearby portable electronic devices. The technology enables smartphones, tablets and other devices to perform actions when in proximity to an iBeacon.

Nearables are a type of smart object. They are everyday items that have small, wireless computing devices attached to them. These devices can be equipped with a variety of sensors and work as transmitters to broadcast digital data through a variety of methods, but they usually use the Bluetooth Smart protocol. Due to this, these objects are able to provide mobile devices in range with information about their location, state and immediate surroundings. The word 'nearables' is a reference to wearable technology – electronic devices worn as part of clothing or jewellery.

sensewhere Ltd. is a privately held software company based in Edinburgh, Scotland, that develops patented indoor positioning technology for retailers, advertisers and app publishers. The company delivers location information indoors or in tight urban areas where there is no or inaccurate GPS signal using automatic crowdsourcing on mobile phones[2]. It was founded as a spun-out company of the University of Edinburgh in 2010.

Bluetooth beacons are hardware transmitters — a class of Bluetooth Low Energy (LE) devices that broadcast their identifier to nearby portable electronic devices. The technology enables smartphones, tablets and other devices to perform actions when in close proximity to a beacon.

<span class="mw-page-title-main">Flipper Zero</span> Multi-tool electronic device

Flipper Zero is a portable Tamagotchi-like multi-functional device developed for interaction with access control systems. The device is able to read, copy, and emulate RFID and NFC tags, radio remotes, iButton, and digital access keys, along with a GPIO interface. It was first announced in August 2020 through the Kickstarter crowdfunding campaign, which raised $4.8 million. The first devices were delivered to backers 18 months after completion of the crowdfunding campaign. The device's user interface embodies a pixel-art dolphin virtual pet. The interaction with the virtual pet is the device's core game mechanic. The usage of the device's functions defines the appearance and emotions of the pet.

References

  1. "Essential Technologies for Warehousing Productivity - SIPMM Publications". publication.sipmm.edu.sg. 2020-10-02. Retrieved 2023-01-03.
  2. San Jose Mercury News. "iPhone helps in Rescue after Some False Starts".{{cite journal}}: Cite journal requires |journal= (help)
  3. Paul, Anindya S.; Wan, Eric A. "WI-FI Based Indoor Localization and Tracking Using Sigma-Point Kalman Filtering Methods" (PDF). Oregon Health and Science University. Archived from the original (PDF) on 2014-10-30. Retrieved 2015-05-26.
  4. "Trilateration / Triangulation - Basic principles of positioning". Location Based Services.