Tracking system

Last updated

+8809611313937

August 31, 2008 -- A resident of Beaumont, TX has his armband scanned as part of the tracking-system being used to identify residents using the transportation services offered by the city of Beaumont to evacuate the city in advance of Hurricane Gustav's landfall. FEMA - 37846 - Evacuees are entered into a computer tracking system in Texas.jpg
August 31, 2008 -- A resident of Beaumont, TX has his armband scanned as part of the tracking-system being used to identify residents using the transportation services offered by the city of Beaumont to evacuate the city in advance of Hurricane Gustav's landfall.
Tracking-system on a forklift Tracking System on Forklift.jpg
Tracking-system on a forklift
An M998 High-Mobility Multipurpose Wheeled Vehicle (HMMWV) carrying a radar and tracking system shelter sits parked at an airfield during Operation Desert Shield. The shelter is used by the Marines of the 3rd Remotely Piloted Vehicle (RPV) Platoon to track their Pioneer RPVs during flight. RQ-2 Pioneer radar and tracking system.JPEG
An M998 High-Mobility Multipurpose Wheeled Vehicle (HMMWV) carrying a radar and tracking system shelter sits parked at an airfield during Operation Desert Shield. The shelter is used by the Marines of the 3rd Remotely Piloted Vehicle (RPV) Platoon to track their Pioneer RPVs during flight.

A tracking system, also known as a locating system, is used for the observing of persons or objects on the move and supplying a timely ordered sequence of location data for further processing.

Contents

Applications

A myriad of tracking systems exists. Some are 'lag time' indicators, that is, the data is collected after an item has passed a point for example a bar code or choke point or gate. [1] Others are 'real-time' or 'near real-time' like Global Positioning Systems (GPS) depending on how often the data is refreshed. There are bar-code systems which require items to be scanned and automatic identification (RFID auto-id). For the most part, the tracking worlds are composed of discrete hardware and software systems for different applications. That is, bar-code systems are separate from Electronic Product Code (EPC) systems, GPS systems are separate from active real time locating systems or RTLS for example, a passive RFID system would be used in a warehouse to scan the boxes as they are loaded on a truck - then the truck itself is tracked on a different system using GPS with its own features and software. [2] The major technology “silos” in the supply chain are:

Distribution/warehousing/manufacturing

Indoors assets are tracked repetitively reading e.g. a barcode, [3] any passive and active RFID and feeding read data into Work in Progress models (WIP) or Warehouse Management Systems (WMS) or ERP software. The readers required per choke point are meshed auto-ID or hand-held ID applications.

However tracking could also be capable of providing monitoring data without binding to a fixed location by using a cooperative tracking capability, e.g. an RTLS.

Yard management

Outdoors mobile assets of high value are tracked by choke point, [4] 802.11, Received Signal Strength Indication (RSSI), Time Delay on Arrival (TDOA), active RFID or GPS Yard Management; feeding into either third party yard management software from the provider or to an existing system. Yard Management Systems (YMS) couple location data collected by RFID and GPS systems to help supply chain managers to optimize utilization of yard assets such as trailers and dock doors. YMS systems can use either active or passive RFID tags.

Fleet management

Fleet management is applied as a tracking application using GPS and composing tracks from subsequent vehicle's positions. Each vehicle to be tracked is equipped with a GPS receiver and relays the obtained coordinates via cellular or satellite networks to a home station. [5] Fleet management is required by:

Person tracking

Person tracking relies on unique identifiers that are temporarily (RFID tags) or permanently assigned to persons like personal identifiers (including biometric identifiers), or national identification numbers and a way to sample their positions, either on short temporal scales as through GPS or for public administration to keep track of a state's citizens or temporary residents. The purposes for doing so are numerous, for example from welfare and public security to mass surveillance.

Attendance management

Mobile phone services

Location-based services (LBS) utilise a combination of A-GPS, newer GPS and cellular locating technology that is derived from the telematics and telecom world. Line of sight is not necessarily required for a location fix. This is a significant advantage in certain applications since a GPS signal can still be lost indoors. As such, A-GPS enabled cell phones and PDAs can be located indoors and the handset may be tracked more precisely. This enables non-vehicle centric applications and can bridge the indoor location gap, typically the domain of RFID and Real-time locating system (RTLS) systems, with an off the shelf cellular device.

Currently, A-GPS enabled handsets are still highly dependent on the LBS carrier system, so handset device choice and application requirements are still not apparent. Enterprise system integrators need the skills and knowledge to correctly choose the pieces that will fit the application and geography.

Operational requirements

Positional tracking in a virtual reality headset Positional tracking in virtual reality.png
Positional tracking in a virtual reality headset

Regardless of the tracking technology, for the most part the end-users just want to locate themselves or wish to find points of interest. The reality is that there is no "one size fits all" solution with locating technology for all conditions and applications.

Application of tracking is a substantial basis for vehicle tracking in fleet management, asset management, individual navigation, social networking, or mobile resource management and more. Company, group or individual interests can benefit from more than one of the offered technologies depending on the context.

GPS tracking

GPS has global coverage but can be hindered by line-of-sight issues caused by buildings and urban canyons. RFID is excellent and reliable indoors or in situations where close proximity to tag readers is feasible, but has limited range and still requires costly readers. RFID stands for Radio Frequency Identification. This technology uses electromagnetic waves to receive the signal from the targeting object to then save the location on a reader that can be looked at through specialized software. [6] [7]

Real-time locating systems (RTLS)

RTLS are enabled by Wireless LAN systems (according to IEEE 802.11) or other wireless systems (according to IEEE 802.15) with multilateration. Such equipment is suitable for certain confined areas, such as campuses and office buildings. RTLS requires system-level deployments and server functions to be effective.

In virtual space

In virtual space technology, a tracking system is generally a system capable of rendering virtual space to a human observer while tracking the observer's coordinates. For instance, in dynamic virtual auditory space simulations, a head tracker provides information to a central processor in real time and this enables the processor to select what functions are necessary to give feedback to the user in relation to where they are positioned. [1]

Additionally, there is vision-based trajectory tracking, that uses a color and depth camera known as a KINECT sensor to track 3D position and movement. This technology can be used in traffic control, human-computer interface, video compression and robotics. [8]

See also

Related Research Articles

Location-based service (LBS) is a general term denoting software services which use geographic data and information to provide services or information to users. LBS can be used in a variety of contexts, such as health, indoor object search, entertainment, work, personal life, etc. Commonly used examples of location-based services include navigation software, social networking services, location-based advertising, and tracking systems. LBS can also include mobile commerce when taking the form of coupons or advertising directed at customers based on their current location. LBS also includes personalized weather services and even location-based games.

Ultra-wideband is a radio technology that can use a very low energy level for short-range, high-bandwidth communications over a large portion of the radio spectrum. UWB has traditional applications in non-cooperative radar imaging. Most recent applications target sensor data collection, precise locating, and tracking. UWB support started to appear in high-end smartphones in 2019.

Radio-frequency identification (RFID) uses electromagnetic fields to automatically identify and track tags attached to objects. An RFID system consists of a tiny radio transponder, a radio receiver and transmitter. When triggered by an electromagnetic interrogation pulse from a nearby RFID reader device, the tag transmits digital data, usually an identifying inventory number, back to the reader. This number can be used to track inventory goods.

Automatic vehicle location is a means for automatically determining and transmitting the geographic location of a vehicle. This vehicle location data, from one or more vehicles, may then be collected by a vehicle tracking system to manage an overview of vehicle travel. As of 2017, GPS technology has reached the point of having the transmitting device be smaller than the size of a human thumb, able to run 6 months or more between battery charges, easy to communicate with smartphones — all for less than $20 USD.

<span class="mw-page-title-main">Telematics</span> Interdisciplinary field that encompasses telecommunications

Telematics is an interdisciplinary field encompassing telecommunications, vehicular technologies, electrical engineering, and computer science. Telematics can involve any of the following:

<span class="mw-page-title-main">Mobile phone tracking</span> Identifying the location of a mobile phone

Mobile phone tracking is a process for identifying the location of a mobile phone, whether stationary or moving. Localization may be affected by a number of technologies, such as the multilateration of radio signals between (several) cell towers of the network and the phone or by simply using GNSS. To locate a mobile phone using multilateration of mobile radio signals, the phone must emit at least the idle signal to contact nearby antenna towers and does not require an active call. The Global System for Mobile Communications (GSM) is based on the phone's signal strength to nearby antenna masts.

Radiolocation, also known as radiolocating or radiopositioning, is the process of finding the location of something through the use of radio waves. It generally refers to passive uses, particularly radar—as well as detecting buried cables, water mains, and other public utilities. It is similar to radionavigation, but radiolocation usually refers to passively finding a distant object rather than actively one's own position; both are types of radiodetermination. Radiolocation is also used in real-time locating systems (RTLS) for tracking valuable assets.

Object hyperlinking is a term that refers to extending the Internet to objects and locations in the real world. Object hyperlinking aims to extend the Internet to the physical world by attaching tags with URLs to tangible objects or locations. These object tags can then be read by a wireless mobile device and information about objects and locations retrieved and displayed.

Fleet management is the management of:

Locative media or location-based media (LBM) is a virtual medium of communication functionally bound to a location. The physical implementation of locative media, however, is not bound to the same location to which the content refers.

In the distribution and logistics of many types of products, track and trace or tracking and tracing concerns a process of determining the current and past locations of a unique item or property. Mass serialization is the process that manufacturers go through to assign and mark each of their products with a unique identifier such as an Electronic Product Code (EPC) for track and trace purposes. The marking or "tagging" of products is usually completed within the manufacturing process through the use of various combinations of human readable or machine readable technologies such as DataMatrix barcodes or RFID.

A GPS tracking unit, geotracking unit, satellite tracking unit, or simply tracker is a navigation device normally on a vehicle, asset, person or animal that uses satellite navigation to determine its movement and determine its WGS84 UTM geographic position (geotracking) to determine its location. Satellite tracking devices may send special satellite signals that are processed by a receiver.

Mobile asset management is managing availability and serviceability of assets used to move, store, secure, protect and control inventory within the enterprise and along the supply chain or in conjunction with service providing.

<span class="mw-page-title-main">Virtual graffiti</span> Graffiti only visible through augmented reality software

Virtual graffiti consists of virtual or digital media applied to public locations, landmarks or surfaces. Virtual graffiti applications utilize augmented reality and ubiquitous computing to anchor virtual graffiti to physical landmarks or objects in the real world. The virtual content can then be viewed through digital devices. Virtual graffiti is aimed at delivering messaging and social multimedia content to mobile applications and devices based on the identity, location, and community of the user.

<span class="mw-page-title-main">Indoor positioning system</span> Network of devices used to wirelessly locate objects inside a building

An indoor positioning system (IPS) is a network of devices used to locate people or objects where GPS and other satellite technologies lack precision or fail entirely, such as inside multistory buildings, airports, alleys, parking garages, and underground locations.

Network Centric Product Support (NCPS) is an early application of an Internet of Things (IoT) computer architecture developed to leverage new information technologies and global networks to assist in managing maintenance, support and supply chain of complex products made up of one or more complex systems, such as in a mobile aircraft fleet or fixed location assets such as in building systems. This is accomplished by establishing digital threads connecting the physical deployed subsystem with its design Digital Twins virtual model by embedding intelligence through networked micro-web servers that also function as a computer workstation within each subsystem component (i.e. Engine control unit on an aircraft) or other controller and enabling 2-way communications using existing Internet technologies and communications networks - thus allowing for the extension of a product lifecycle management (PLM) system into a mobile, deployed product at the subsystem level in real time. NCPS can be considered to be the support flip side of Network-centric warfare, as this approach goes beyond traditional logistics and aftermarket support functions by taking a complex adaptive system management approach and integrating field maintenance and logistics in a unified factory and field environment. Its evolution began out of insights gained by CDR Dave Loda (USNR) from Network Centric Warfare-based fleet battle experimentation at the US Naval Warfare Development Command (NWDC) in the late 1990s, who later lead commercial research efforts of NCPS in aviation at United Technologies Corporation. Interaction with the MIT Auto-ID Labs, EPCglobal, the Air Transport Association of America ATA Spec 100/iSpec 2200 and other consortium pioneering the emerging machine to machine Internet of Things (IoT) architecture contributed to the evolution of NCPS.

Location awareness refers to devices that can determine their location. Navigational instruments provide location coordinates for vessels and vehicles. Surveying equipment identifies location with respect to a well-known location wireless communications device.

Real-time locating systems (RTLS), also known as real-time tracking systems, are used to automatically identify and track the location of objects or people in real time, usually within a building or other contained area. Wireless RTLS tags are attached to objects or worn by people, and in most RTLS, fixed reference points receive wireless signals from tags to determine their location. Examples of real-time locating systems include tracking automobiles through an assembly line, locating pallets of merchandise in a warehouse, or finding medical equipment in a hospital.

A vehicle tracking system combines the use of automatic vehicle location in individual vehicles with software that collects these fleet data for a comprehensive picture of vehicle locations. Modern vehicle tracking systems commonly use GPS or GLONASS technology for locating the vehicle, but other types of automatic vehicle location technology can also be used. Vehicle information can be viewed on electronic maps via the Internet or specialized software. Urban public transit authorities are an increasingly common user of vehicle tracking systems, particularly in large cities.

US Fleet Tracking is a privately owned company that specializes in manufacturing and distributing GPS Tracking products and accessories designed to enable businesses and individuals to monitor their mobile assets and vehicle fleets, tracking those vehicles live, in realtime, as they move.

References

  1. 1 2 Peter, Emmanuel. "COMPUTERIZED CRIME TRACKING INFORMATION SYSTEM CASE STUDY OF NIGERIAN POLICE, ENUGU".{{cite journal}}: Cite journal requires |journal= (help)
  2. Kamel Boulos, Maged N; Berry, Geoff (2012). "Real-time locating systems (RTLS) in healthcare: a condensed primer". International Journal of Health Geographics. 11 (1): 25. doi: 10.1186/1476-072x-11-25 . ISSN   1476-072X. PMC   3408320 . PMID   22741760.
  3. Clancy, Heather. "California security company uses barcodes to help track assets". CBS Interactive. Archived from the original on February 13, 2012. Retrieved February 9, 2012.
  4. "Cisco Unveils Wireless Location Solution and New Unified Wireless Network Software Release". CISCO. Archived from the original on July 20, 2008. Retrieved May 22, 2007.
  5. "10 tips for selecting a GPS fleet management solution". Phc News. Archived from the original on 2013-08-26. Retrieved 2011-08-30.
  6. Warner 2007.
  7. "RFID". RFID Journal LLC. 20 February 2022. Archived from the original on 22 August 2013. Retrieved 27 August 2013.
  8. Jurado, Francisco; Palacios, Guillermo; Flores, Francisco (November 2012). "Vision-Based Trajectory Tracking on the 3D Virtual Space for a Quadrotor". 2012 IEEE Ninth Electronics, Robotics and Automotive Mechanics Conference. pp. 31–36. doi:10.1109/CERMA.2012.13. ISBN   978-1-4673-5096-9. S2CID   2874317.

Further reading