Automated Tropical Cyclone Forecasting System

Last updated

This is how forecast model tracks appear within ATCF. This example is from 2006 Ernesto's first advisory. The NHC official forecast is light blue, while the storm's actual track is the white line over Florida. Ernesto2006modelspread.png
This is how forecast model tracks appear within ATCF. This example is from 2006 Ernesto's first advisory. The NHC official forecast is light blue, while the storm's actual track is the white line over Florida.

The Automated Tropical Cyclone Forecasting System (ATCF) is a piece of software originally developed to run on a personal computer for the Joint Typhoon Warning Center (JTWC) in 1988, [1] and the National Hurricane Center (NHC) in 1990. ATCF remains the main piece of forecasting software used for the United States Government, including the JTWC, NHC, and Central Pacific Hurricane Center. Other tropical cyclone centers in Australia and Canada developed similar software in the 1990s. The data files with ATCF lie within three decks, known as the a-, b-, and f-decks. The a-decks include forecast information, the b-decks contain a history of center fixes at synoptic hours, and the f-decks include the various fixes made by various analysis center at various times. In the years since its introduction, it has been adapted to Unix and Linux platforms.

Contents

Reason for development

ATCF image of Nabi's (2005) previous track, forecast track, along with tropical storm, storm, and hurricane-force wind radii depicted, from 18z on September 5 Typhoon Nabi (Jolina) JTWC's Tracking Chart (2005-09-05 1800Z).gif
ATCF image of Nabi's (2005) previous track, forecast track, along with tropical storm, storm, and hurricane-force wind radii depicted, from 18z on September 5

The need for a more modernized method for forecasting tropical cyclones had become apparent by the mid-1980s. At that time Department of Defense was using acetate, grease pencils, and disparate computer programs to forecast tropical cyclones. [1] The ATCF software was developed by the Naval Research Laboratory for the Joint Typhoon Warning Center (JTWC) in Monterey, California beginning in 1986, [2] and used since 1988. [3] During 1990 the system was adapted by the National Hurricane Center (NHC) for use at the NHC, National Centers for Environmental Prediction and the Central Pacific Hurricane Center. [2] [4] This provided the NHC with a multitasking software environment which allowed them to improve efficiency and cut the time required to make a forecast by 25% or 1 hour. [4] ATCF was originally developed for use within DOS, before later being adapted to Unix and Linux. [2]

System identification

Systems within ATCF are identified with the basin prefix (AL – North Atlantic Ocean, CP – Central North Pacific Ocean, EP – North-East Pacific Ocean, IO – North Indian Ocean, SH – Southern Hemisphere, SL – South Atlantic Ocean, WP – North-West Pacific Ocean) and then followed by two digit number between 01 and 49 for active tropical cyclones, [5] which becomes incremented with each new system, and then the year associated with the system (e.g. EP202015 for Hurricane Patricia). Numbers from 50 through 79 after the basin acronym are used internally by the basin's respective Tropical Cyclone Warning Centers and Regional Specialized Meteorological Center. [6] Numbers in the 80s are used for training purposes and can be reused. Numbers in the 90s are used for areas of interest, [7] sometimes referred to as invests or areas of disturbed weather, and are also reused within any particular year. Their status is listed the following ways within the associated data file: DB – disturbance, TD – tropical depression, TS – tropical storm, TY – typhoon, ST – super typhoon, TC – tropical cyclone, HU – hurricane, SD – subtropical depression, SS – subtropical storm, EX – extratropical systems, IN – inland, DS – dissipating, LO – low, WV – tropical wave, ET – extrapolated, and XX – unknown. Times used are in a four digit year, month, day, and hour format. [5]

Data formats and locations in ATCF

The "A deck" contains the official track and intensity forecast, as well as the model guidance, also known as the objective aids. The "B deck" contains the storm's track information at synoptic hours (0000, 0600, 1200, and 1800 UTC). The "F deck" contains what are known as position fixes and intensity estimates for the associated tropical cyclone, based on satellite data on the cyclone derived by the Dvorak technique. The "E deck" contains information regarding position error and probabilistic information regarding the forecast at that time. [7]

Similar software used elsewhere

In the 1990s, other countries developed similar tropical cyclone forecasting software. The Bureau of Meteorology in Australia developed the Australian Tropical Cyclone Workstation. The Canadian Hurricane Centre developed Canadian Hurricane Centre Forecaster's Workstation. [2]

Related Research Articles

<span class="mw-page-title-main">Subtropical cyclone</span> Cyclonic storm with both tropical and extratropical characteristics

A subtropical cyclone is a weather system that has some characteristics of both tropical and an extratropical cyclone.

<span class="mw-page-title-main">National Hurricane Center</span> Division of the United States National Weather Service

The National Hurricane Center (NHC) is the division of the United States' NOAA/National Weather Service responsible for tracking and predicting tropical weather systems between the Prime Meridian and the 140th meridian west poleward to the 30th parallel north in the northeast Pacific Ocean and the 31st parallel north in the northern Atlantic Ocean. The agency, which is co-located with the Miami branch of the National Weather Service, is situated on the campus of Florida International University in Westchester, Florida.

<span class="mw-page-title-main">Central Pacific Hurricane Center</span>

The Central Pacific Hurricane Center (CPHC) of the United States National Weather Service is the official body responsible for tracking and issuing tropical cyclone warnings, watches, advisories, discussions, and statements for the Central Pacific region: from the equator northward, 140°W–180°W, most significantly for Hawai‘i. It is the Regional Specialized Meteorological Center (RSMC) for tropical cyclones in this region, and in this capacity is known as RSMC Honolulu.

<span class="mw-page-title-main">Joint Typhoon Warning Center</span> Joint United States Navy – United States Air Force command

The Joint typhoon Warning Center (JTWC) is a joint United States Navy – United States Air Force command in Pearl Harbor, Hawaii. The JTWC is responsible for the issuing of tropical cyclone warnings in the North-West Pacific Ocean, South Pacific Ocean, and Indian Ocean for all branches of the U.S. Department of Defense and other U.S. government agencies. Their warnings are intended for the protection of primarily military ships and aircraft as well as military installations jointly operated with other countries around the world.

<span class="mw-page-title-main">Annular tropical cyclone</span> Tropical cyclone with a symmetrical shape

An annular tropical cyclone is a tropical cyclone that features a normal to large, symmetric eye surrounded by a thick and uniform ring of intense convection, often having a relative lack of discrete rainbands, and bearing a symmetric appearance in general. As a result, the appearance of an annular tropical cyclone can be referred to as akin to a tire or doughnut. Annular characteristics can be attained as tropical cyclones intensify; however, outside the processes that drive the transition from asymmetric systems to annular systems and the abnormal resistance to negative environmental factors found in storms with annular features, annular tropical cyclones behave similarly to asymmetric storms. Most research related to annular tropical cyclones is limited to satellite imagery and aircraft reconnaissance as the conditions thought to give rise to annular characteristics normally occur over open water, well removed from landmasses where surface observations are possible.

<span class="mw-page-title-main">Pacific hurricane</span> Mature tropical cyclone that develops within the eastern and central Pacific Ocean

A Pacific hurricane is a mature tropical cyclone that develops within the northeastern and central Pacific Ocean to the east of 180°W, north of the equator. For tropical cyclone warning purposes, the northern Pacific is divided into three regions: the eastern, central, and western, while the southern Pacific is divided into 2 sections, the Australian region and the southern Pacific basin between 160°E and 120°W. Identical phenomena in the western north Pacific are called typhoons. This separation between the two basins has a practical convenience, however, as tropical cyclones rarely form in the central north Pacific due to high vertical wind shear, and few cross the dateline.

<span class="mw-page-title-main">Typhoon</span> Type of tropical cyclone that develops in the Northern Hemisphere

A typhoon is a mature tropical cyclone that develops between 180° and 100°E in the Northern Hemisphere. This region is referred to as the Northwestern Pacific Basin, and is the most active tropical cyclone basin on Earth, accounting for almost one-third of the world's annual tropical cyclones. For organizational purposes, the northern Pacific Ocean is divided into three regions: the eastern, central, and western. The Regional Specialized Meteorological Center (RSMC) for tropical cyclone forecasts is in Japan, with other tropical cyclone warning centers for the northwest Pacific in Hawaii, the Philippines, and Hong Kong. Although the RSMC names each system, the main name list itself is coordinated among 18 countries that have territories threatened by typhoons each year.

<span class="mw-page-title-main">Tropical cyclone forecast model</span> Computer program that uses meteorological data to forecast tropical cyclones

A tropical cyclone forecast model is a computer program that uses meteorological data to forecast aspects of the future state of tropical cyclones. There are three types of models: statistical, dynamical, or combined statistical-dynamic. Dynamical models utilize powerful supercomputers with sophisticated mathematical modeling software and meteorological data to calculate future weather conditions. Statistical models forecast the evolution of a tropical cyclone in a simpler manner, by extrapolating from historical datasets, and thus can be run quickly on platforms such as personal computers. Statistical-dynamical models use aspects of both types of forecasting. Four primary types of forecasts exist for tropical cyclones: track, intensity, storm surge, and rainfall. Dynamical models were not developed until the 1970s and the 1980s, with earlier efforts focused on the storm surge problem.

<span class="mw-page-title-main">James Franklin (meteorologist)</span> Former weather forecaster with NOAA

James Louis Franklin is a former weather forecaster encompassing a 35-year career with National Oceanic and Atmospheric Administration (NOAA). He served as the first branch chief of the newly formed Hurricane Specialist Unit (HSU) before his retirement in 2017.

<span class="mw-page-title-main">Dvorak technique</span> Subjective technique to estimate tropical cyclone intensity

The Dvorak technique is a widely used system to estimate tropical cyclone intensity based solely on visible and infrared satellite images. Within the Dvorak satellite strength estimate for tropical cyclones, there are several visual patterns that a cyclone may take on which define the upper and lower bounds on its intensity. The primary patterns used are curved band pattern (T1.0-T4.5), shear pattern (T1.5–T3.5), central dense overcast (CDO) pattern (T2.5–T5.0), central cold cover (CCC) pattern, banding eye pattern (T4.0–T4.5), and eye pattern (T4.5–T8.0).

<span class="mw-page-title-main">Tropical cyclone forecasting</span> Science of forecasting how a tropical cyclone moves and its effects

Tropical cyclone forecasting is the science of forecasting where a tropical cyclone's center, and its effects, are expected to be at some point in the future. There are several elements to tropical cyclone forecasting: track forecasting, intensity forecasting, rainfall forecasting, storm surge, tornado, and seasonal forecasting. While skill is increasing in regard to track forecasting, intensity forecasting skill remains unchanged over the past several years. Seasonal forecasting began in the 1980s in the Atlantic basin and has spread into other basins in the years since.

The Hurricane Databases (HURDAT), managed by the National Hurricane Center, are two separate databases that contain details on tropical cyclones, that have occurred within the Atlantic Ocean and Eastern Pacific Ocean since 1851 and 1949 respectively.

<span class="mw-page-title-main">Invest (meteorology)</span> Area of weather monitored for cyclones

An invest in meteorology is a designated area of disturbed weather that is being monitored for potential tropical cyclone development. Invests are designated by three separate United States forecast centers: the National Hurricane Center, the Central Pacific Hurricane Center, and the Joint Typhoon Warning Center.

<span class="mw-page-title-main">Hurricane Ekeka</span> Category 3 Pacific hurricane and typhoon in 1992

Hurricane Ekeka was the most intense off-season tropical cyclone on record in the northeastern Pacific basin. The first storm of the 1992 Pacific hurricane season, Ekeka developed on January 28 well to the south of Hawaii. It gradually intensified to reach major hurricane status on February 2, although it subsequently began to weaken due to unfavorable high wind shear. It crossed the International Date Line as a weakened tropical storm, and shortly thereafter degraded to tropical depression status. Ekeka continued westward, passing through the Marshall Islands and later over Chuuk State, before dissipating on February 9 about 310 miles (500 km) off the north coast of Papua New Guinea. The storm did not cause any significant damage or deaths.

<span class="mw-page-title-main">Glossary of tropical cyclone terms</span>

The following is a glossary of tropical cyclone terms.

<span class="mw-page-title-main">History of Atlantic hurricane warnings</span> Aspect of meteorological history

The history of Atlantic tropical cyclone warnings details the progress of tropical cyclone warnings in the North Atlantic Ocean. The first service was set up in the 1870s from Cuba with the work of Father Benito Viñes. After his death, hurricane warning services were assumed by the US Army Signal Corps and United States Weather Bureau over the next few decades, first based in Jamaica and Cuba before shifting to Washington, D.C. The central office in Washington, which would evolve into the National Meteorological Center and the Weather Prediction Center, assumed the responsibilities by the early 20th century. This responsibility passed to regional hurricane offices in 1935, and the concept of the Atlantic hurricane season was established to keep a vigilant lookout for tropical cyclones during certain times of the year. Hurricane advisories issued every 12 hours by the regional hurricane offices began at this time.

<span class="mw-page-title-main">1951 Pacific hurricane season</span> Hurricane season in the Pacific Ocean

The 1951 Pacific hurricane season ran through the summer and fall of 1951. Nine tropical systems were observed during the season.

<span class="mw-page-title-main">Tropical cyclone tracking chart</span> Chart used in plotting tropical cyclone tracks

A tropical cyclone tracking chart is used by those within hurricane-threatened areas to track tropical cyclones worldwide. In the north Atlantic basin, they are known as hurricane tracking charts. New tropical cyclone information is available at least every six hours in the Northern Hemisphere and at least every twelve hours in the Southern Hemisphere. Charts include maps of the areas where tropical cyclones form and track within the various basins, include name lists for the year, basin-specific tropical cyclone definitions, rules of thumb for hurricane preparedness, emergency contact information, and numbers for figuring out where tropical cyclone shelters are open.

Tropical Cyclone Heat Potential (TCHP) is one of such non-conventional oceanographic parameters influencing the tropical cyclone intensity. The relationship between Sea Surface Temperature (SST) and cyclone intensity has been long studied in statistical intensity prediction schemes such as the National Hurricane Center Statistical Hurricane Intensity Prediction Scheme (SHIPS) and Statistical Typhoon Intensity Prediction Scheme (STIPS). STIPS is run at the Naval Research Laboratory in Monterey, California, and is provided to Joint Typhoon Warning Centre (JTWC) to make cyclone intensity forecasts in the western North Pacific, South Pacific, and Indian Oceans. In most of the cyclone models, SST is the only oceanographic parameter representing heat exchange. However, cyclones have long been known to interact with the deeper layers of ocean rather than sea surface alone. Using a coupled ocean atmospheric model, Mao et al., concluded that the rate of intensification and final intensity of cyclone were sensitive to the initial spatial distribution of the mixed layer rather than to SST alone. Similarly, Namias and Canyan observed patterns of lower atmospheric anomalies being more consistent with the upper ocean thermal structure variability than SST. 

References

  1. 1 2 Ronald J. Miller; Ann J. Schrader; Charles R. Sampson & Ted L. Tsui (December 1990). "The Automated Tropical Cyclone Forecasting System (ATCF)". Weather and Forecasting. 5 (4): 653–660. Bibcode:1990WtFor...5..653M. doi: 10.1175/1520-0434(1990)005<0653:TATCFS>2.0.CO;2 .
  2. 1 2 3 4 Sampson, Charles R; Schrader, Ann J (June 2000). "The Automated Tropical Cyclone Forecasting System (Version 3.2)". Bulletin of the American Meteorological Society. 81 (6): 1231–1240. Bibcode:2000BAMS...81.1231S. doi: 10.1175/1520-0477(2000)081<1231:tatcfs>2.3.co;2 .
  3. Sampson, Charles R.; Schrader, Ann J. (2000). "The Automated Tropical Cyclone Forecasting System (Version 3.2)". Bulletin of the American Meteorological Society. 81 (6): 1231–1240. doi:10.1175/1520-0477(2000)081<1231:TATCFS>2.3.CO;2. ISSN   0003-0007. JSTOR   26215160. S2CID   122126725.
  4. 1 2 Rappaport, Edward N; Franklin, James L; Avila, Lixion A; Baig, Stephen R; Beven II, John L; Blake, Eric S; Burr, Christopher A; Jiing, Jiann-Gwo; Juckins, Christopher A; Knabb, Richard D; Landsea, Christopher W; Mainelli, Michelle; Mayfield, Max; McAdie, Colin J; Pasch, Richard J; Sisko, Christopher; Stewart, Stacy R; Tribble, Ahsha N (April 2009). "Advances and Challenges at the National Hurricane Center". Weather and Forecasting. 24 (2): 409. Bibcode:2009WtFor..24..395R. CiteSeerX   10.1.1.207.4667 . doi:10.1175/2008WAF2222128.1. S2CID   14845745.
  5. 1 2 United States Naval Research LaboratoryMonterey, Marine Meteorology Division (2010-06-08). "Best Track/Objective Aid/Wind Radii Format". United States Navy . Retrieved 2014-06-20.{{cite web}}: CS1 maint: multiple names: authors list (link)
  6. Office of the Federal Coordinator for Meteorology (2007). "61st Interdepartmental Hurricane Conference Action Items" (PDF). Internet Archive Wayback Machine. p. 14. Archived from the original (PDF) on November 29, 2007. Retrieved 2014-05-20.
  7. 1 2 Michael J. Brennan, National Hurricane Center (2013-05-18). "Automated Tropical Cyclone Forecast (ATCF) Data Files / Text Files". National Oceanic and Atmospheric Administration.