Azospirillum halopraeferens

Last updated

Azospirillum halopraeferens
Scientific classification
Kingdom:
Phylum:
Class:
Order:
Family:
Genus:
Species:
Azospirillum halopraeferens

Reinhold et al., 1987

Azospirillum halopraeferens is a species of nitrogen-fixing bacteria associated with the roots of Diplachne fusca and black mangrove. [1] [2] It is microaerophilic and its type strain is Au 4 (= LMG 7108 =DSM 3675).

Contents

Related Research Articles

Diazotrophs are bacteria and archaea that fix atmospheric nitrogen gas into a more usable form such as ammonia.

Pseudomonas lini is a fluorescent, Gram-negative, rod-shaped bacterium isolated from rhizospheric soil in France. The type strain is CFBP 5737, though there are also eight other strains known. This bacterium has also been isolated from endophytic tissues of lodgepole pine trees growing on gravel mining sites with potential to perform biological nitrogen fixation and plant growth promotion.

Rhizobacteria

Rhizobacteria are root-associated bacteria that form symbiotic relationships with many plants. The name comes from the Greek rhiza, meaning root. Though parasitic varieties of rhizobacteria exist, the term usually refers to bacteria that form a relationship beneficial for both parties (mutualism). They are an important group of microorganisms used in biofertilizer. Biofertilization accounts for about 65% of the nitrogen supply to crops worldwide. Rhizobacteria are often referred to as plant growth-promoting rhizobacteria, or PGPRs. The term PGPRs was first used by Joseph W. Kloepper in the late 1970s and has become commonly used in scientific literature. PGPRs have different relationships with different species of host plants. The two major classes of relationships are rhizospheric and endophytic. Rhizospheric relationships consist of the PGPRs that colonize the surface of the root, or superficial intercellular spaces of the host plant, often forming root nodules. The dominant species found in the rhizosphere is a microbe from the genus Azospirillum. Endophytic relationships involve the PGPRs residing and growing within the host plant in the apoplastic space.

Microbial inoculants also known as soil inoculants or bioinoculants are agricultural amendments that use beneficial rhizosphericic or endophytic microbes to promote plant health. Many of the microbes involved form symbiotic relationships with the target crops where both parties benefit (mutualism). While microbial inoculants are applied to improve plant nutrition, they can also be used to promote plant growth by stimulating plant hormone production.

Gluconacetobacter sacchari is a species of acetic acid bacteria first isolated from the leaf sheath of sugar cane and from the pink sugar-cane mealy bug on sugar cane growing in Queensland and northern New South Wales. The type strain of this species is strain SRI 1794T. It is notable for its production of bacterial cellulose and for being an endophyte in sugar cane.

Azospirillum brasilense Species of bacterium

Azospirillum brasilense is a well studied, nitrogen-fixing (diazotroph), genetically tractable, Gram-negative, alpha-proteobacterium bacterium, first described in Brazil by the group of Johanna Döbereiner and then receiving the name "brasilense". A. brasilense is able to fix nitrogen in the presence of low oxygen levels, making it a microaerobic diazotroph. An isolate from the genus Azospirillum was isolated from nitrogen poor soils in the Netherlands in 1925, however the species A. brasilense was first described in 1978 in Brazil, since this genus is widely found in the rhizospheres of grasses around the world where it confers plant growth promotion. Whether growth promotion occurs through direct nitrogen flux from the bacteria to the plant or through hormone regulation is debated. The two most commonly studied strains are Sp7 and Sp245, both are Brazilian isolates isolated from Tropical grasses from Seropedica, Brazil.

Pararhizobium giardinii is a Gram negative root nodule bacteria. It forms nitrogen-fixing root nodules on legumes, being first isolated from those of Phaseolus vulgaris.

Rhizobium gallicum is a Gram-negative root-nodule bacterium. It forms nitrogen-fixing root nodules on legumes, being first isolated from those of Phaseolus vulgaris.

Azoarcus indigens is a species of bacteria. It is a nitrogen-fixing bacteria associated with roots of Leptochloa fusca . Its cells are yellow-pigmented, straight to curved, gram-negative rods. Its type strain is VB32.

Azoarcus communis is a species of bacteria. It is a nitrogen-fixing bacteria. Its cells are yellow-pigmented, straight to curved, gram-negative rods. Its type strain is LMG 5514.

Azoarcus is a genus of nitrogen-fixing bacteria. Species in this genus are usually found in contaminated water, as they are involved in the degradation of some contaminants, commonly inhabiting soil. These bacteria have also been found growing in the endophytic compartment of some rice species and other grasses. The genus is within the family Zoogloeaceae in the Rhodocyclales of the Betaproteobacteria.

Azospirillum doebereinerae is a species of nitrogen-fixing bacteria associated with the roots of Miscanthus species. Its type strain is GSF71T.

Root microbiome

The root microbiome is the dynamic community of microorganisms associated with plant roots. Because they are rich in a variety of carbon compounds, plant roots provide unique environments for a diverse assemblage of soil microorganisms, including bacteria, fungi and archaea. The microbial communities inside the root and in the rhizosphere are distinct from each other, and from the microbial communities of bulk soil, although there is some overlap in species composition.

Gluconacetobacter johannae is a species of acetic acid bacteria first isolated from rhizospheres and rhizoplanes of coffee plants. Its type strain is CFN-Cf55T.

Gluconacetobacter azotocaptans is a species of acetic acid bacteria first isolated from rhizospheres and rhizoplanes of coffee plants. Its type strain is CFN-Ca54T.

Desulfobacter latus is a sulfate-reducing bacteria, with type strain AcRS2.

Azospirillum oryzae is a species of nitrogen-fixing bacteria associated with the roots of Oryza sativa. Its type strain is COC8T.

Azospirillum canadense is a nitrogen-fixing bacterium isolated from corn rhizospheres. Its type strain is DS2T.

Azospirillum is a Gram-negative, microaerophilic, non-fermentative and nitrogen-fixing bacterial genus from the family of Rhodospirillaceae. Azospirillum bacteria can promote plant growth.

"CandidatusThiodictyon syntrophicum" is a gram-negative bacterium classified within purple sulfur bacteria (PSB). "Ca. T. syntrophicum" grows best under micro-oxic and low light conditions. There has only been one successful enrichment of "Ca. T. syntrophicum"; "Ca. T. syntrophicum" strain Cad16T.

References

  1. Puente, M (1999). "Root-surface colonization of black mangrove seedlings by Azospirillum halopraeferens and Azospirillum brasilense in seawater". FEMS Microbiology Ecology. 29 (3): 283–292. doi: 10.1016/S0168-6496(99)00023-9 . ISSN   0168-6496.
  2. Reinhold, B.; Hurek, T.; Fendrik, I.; Pot, B.; Gillis, M.; Kersters, K.; Thielemans, S.; De Ley, J. (1987). "Azospirillum halopraeferens sp. nov., a Nitrogen-Fixing Organism Associated with Roots of Kallar Grass (Leptochloa fusca (L.) Kunth)". International Journal of Systematic Bacteriology. 37 (1): 43–51. doi: 10.1099/00207713-37-1-43 . ISSN   0020-7713.

Further reading