BC Transmission Corporation

Last updated

The British Columbia Transmission Corporation (BCTC) was a Crown corporation in the province of British Columbia, Canada. Its mandate was to plan, build, operate and maintain B.C.'s electricity transmission system.

Contents

History and background

The British Columbia Transmission Corporation (BCTC) was a provincial Crown corporation located in downtown Vancouver regulated by the BC Utilities Commission (BCUC). BCTC was formed in 2003 as a mandate to separate the province's power transmission and generation initiatives but was integrated back into its sister company BC Hydro on 5 July 2010 as part of the province's Clean Energy Act. BCTC was formed to operate the transmission system, while BC Hydro remained the owner of the transmission system.

BCTC was formed in 2003 as the BC Liberal Party's mandate to separate the province's power transmission from BC Hydro. The creation of a separate corporation and the split cost taxpayers an estimated 65 million dollars. Seven years after the separation from BC Hydro, BCTC was integrated back into BC Hydro on 5 July 2010 as part of the province's New Clean Energy Act.

Michael Costello was the first BCTC CEO from 2003-2005. Jane Peverett was BCTC's president and CEO from 2005-2009. Jane Peverett had been at Imperial Oil from 1981-1987 before transferring to a natural gas utility in Toronto. The company was eventually bought by West Coast Energy. When West Coast was bought by Duke Energy in 2002, Jane played a key role in the transition. One year later, she accepted the CFO role at the newly created Vancouver company, BCTC. Janet Woodruff was BCTC's interim CEO from 2009–2010.

When BCTC was formed, the North American electricity industry was hoping to attain increased independence of transmission, and the development of regional transmission organizations. Since then, regional transmission organizations did not develop in the Pacific Northwest, and the movement towards greater independence for transmission was halted. BCTC's publicly owned transmission infrastructure was created to help foster and encourage new sources of power generation across the province of BC. Which was one of the goals of the Province's 2002 Energy Plan.

In February 2007, the B.C. government issued a new Energy Plan. This plan included several policies relating to transmission to ensure adequate transmission be in place to support the province's goal of energy self-sufficiency as well as ensuring BC would have mandatory reliability standards for energy generation.

2010 BC Clean Energy Act

The Act sets out very specific provisions for British Columbia to become a leading supplier of clean, renewable energy. The Act also establishes a number of measures that is supposed to help meet future electricity needs while generating new jobs and reducing greenhouse gas emissions.

BC's 2010 Clean Energy Act does not change BCTC's roles and responsibilities including planning, building, operating, and maintaining the province's publicly owned electrical transmission system. It also means that BC Hydro will continue to be publicly owned, with the government as its shareholder and public ownership of heritage assets protected by legislation.

This decision was made because the integration of BC Hydro and BCTC into one organization was an important component of the government's clean energy initiative. Unifying BC Hydro and BCTC provides a single point of planning and authority for the provinces energy system.

Operations

BCTC managed over 300 substations and 18,000 km of transmission lines throughout the province of British Columbia and had over 350 employees, and was located in the Bentall Building of Downtown Vancouver with assets of over 2.5 billion.

Its transmission system was built between 1940 and 1980, and maintains over 60 generating facilities in British Columbia. Energy is generated by hydroelectric generating stations that are owned and operated by BC Hydro. Seventy percent of BC's power supply is provided by large reservoirs, and generating stations from the Peace and Columbia regions of British Columbia.

Power is delivered throughout the province through high-voltage lines from its generation facilities to the local substations located throughout the mainland and Vancouver Island facilities where it is distributed and transmitted to local regional commercial businesses and private homes. Most of British Columbia's electricity supply comes from facilities in the Interior of BC, while 70 to 80 per cent of demand for electricity is in the Lower Mainland and Vancouver Island.

BCTC manages BC's publicly owned transmission system, which includes transmission towers, high-voltage lines, substations and rights-of-way across the province. The transmission lines, cables and substations move electricity across the province which are monitored and controlled from one main control centre and one backup control centre. While much of this activity is automated through computerized Energy Management Systems, operating staff at the control centres work around the clock to respond to varying external conditions or system disturbances and ensure high levels of safety and reliability. The control centre is a state-of-the-art facility which connects 31 independent power projects and more than 830 MW since 2003.

Awards

BCTC and Hydro-Québec's LineScout partnership earned the highest award in the Energy Industry – the 2010 Edison Award in the International Affiliate Category. The Edison Electric Institute's Edison Award, considered one of the industry's highest honors, recognizes distinguished leadership, innovation and contribution to the advancement of the electric industry. The official announcement of the Edison Award is announced and presented at EEI's Annual Convention in June.

BCTC and Hydro-Québec won the Edison Award for the two utilities' partnership in developing the LineScout Robotics Technology for the inspection of transmission water crossings in British Columbia and demonstrates a step forward in innovative inspection methods, high voltage line robotics and employee safety for the energy industry.

LineScout Technology

LineScout Technology (LST), is a robotic device that inspects high-voltage transmission lines across long passages to improve reliability, inspection, and safety. Hydro-Québec Research Institute, IREQ, worked extensively with BCTC to implement LST on BCTC's large water crossing transmission lines which were built more than 30 years ago. The remote-controlled robot uses cameras to inspect line conditions and discover irregularities, while also employing a smart navigation system to pinpoint locations in need of attention. The LST is able to maneuver obstacles such as splices, hardware components and aviation warning markers. Unlike conventional transmission line servicing, the robot can service the lines while they are energized.

LineScout's robotic platform allows it to cross most obstacles on the transmission lines. Its third generation prototype is validated and tested under field conditions. LineScout's technology is distinct as it can incorporate robotics into power utilities. It can also carry a reasonable load, is versatile, and able to adapt to unforeseen obstacles, as well as its teleoperative controls, reliability, and its capacity to add sensors and tools. Obstacle detection and identification allows the autonomous selection of appropriate strategies for crossing obstacles, as well as the visual inspection of line components found on conductor bundles.

The transmission system

Overview of the transmission system

The transmission system is part of the Western Interconnection, and extends from BC to Alberta in the north, and northern Mexico in the south, and includes most systems in the western U.S. As required by the Western Electricity Coordinating Council (WECC), the transmission system is planned, built and operated in a manner that avoids negative impact on the interconnected neighboring systems outside BC. Interties to neighboring systems provide opportunities for electricity trade, improves overall reliability of the system, makes backup energy resources available in emergencies, and improves frequency control and power fluctuations.

In BC, the transmission system is divided into three main components – the bulk transmission system, the regional transmission systems and the interties (interconnections). The internal interties include interties to the Alcan system and the FortisBC system. The external interties include interties to Alberta and Washington State. The transmission system also includes a comprehensive communication, protection and control system as part of its components.

Currently, BCTC's operates and maintains:

The bulk transmission system includes the 500 kV transmission system, parts of the 230 kV system, the transmission connections to Vancouver Island, and interconnections with other utilities through interties. These lines connect the large remote generating stations in the Peace River and Columbia River areas with the major load centres of the Lower Mainland and Vancouver Island, which together comprise over 70% of the BC Hydro load.

Four regional transmission systems transfer energy within specific geographic areas of the province: the Northern Interior, the Southern Interior, the Lower Mainland, and Vancouver Island.

The regional systems generally consist of 230 kV, 138 kV, and 60 kV transmission networks that connect local generation and deliver power to distribution utilities or transmission customers located within the region. The transmission system is currently managed by BCTC's System Control Centre (SCC) located in the Lower Mainland, with support from four Regional Control Centres (RCCs). The SCC operates the bulk system, controls intertie flows, and balances the generation supply to meet the real time demand for electrical energy. Control and monitoring activity is automated through a computerized Energy Management System (EMS) and Supervisory Control and Data Acquisition (SCADA) system. The RCC's are located in Vancouver, Duncan, Vernon and Prince George. Coordination between the SCC and the regional centres ensures that the electric system can operate reliably while meeting customer demands, facilitating electricity trade, and accommodating maintenance outage requirements. BCTC replaced the current SCC and RCCs with a centralized control centre in the fall of 2008. The centralization project, known as the System Control Modernization Project (SCMP), consists of a geographically separate backup facility, to streamline control and operating infrastructure, replace obsolete technology, and to resolve seismic risk issues.

Approximately half of BC Hydro's generation is located in the BC Southern Interior, one of the largest generation regions in BC.

Overview of the Southern Interior system

BC Hydro's total installed generation capacity connected to the Southern Interior is 5264 MW. Revelstoke and Mica Generating Stations connect directly into the 500 kV system, while Kootenay Canal, Seven Mile and Arrow Lake generating stations are integrated into the 230 kV system. Other hydroelectric generating stations in the southeast are connected to the FortisBC transmission.

Overview of the Interior Lower Mainland System (ILM)

The ILM grid is composed of eight 500 kV transmission lines. The power transfer from the Interior to the Lower Mainland and Vancouver Island takes place over four of these lines:

(a) 5L81 and 5L82 connect Nicola (NIC) Substation in the South Interior to Ingledow (ING) and Meridian (MDN) substations in the LM
(b) 5L42 connects Kelly Lake (KLY) Substation in the Interior to Cheekye (CKY) Substation
(c) 5L41 connects KLY to Clayburn (CBN) Substation in the LM.

Four additional lines allow for power sharing between the substations:

(a) 5L45 connects CKY and MDN substations in the LM

(b) 5L44 connects MDN and ING substations in the Lower Mainland.

(c) 5L40 connects CBN an ING substations in the LM

(d) 5L87 connects NIC and KLY substations in the Interior

The Vancouver Island regional system

The Vancouver Island regional system is a network of 230 kV, 138 kV, and 60 kV systems. The Vancouver Island system has three areas: (a) North Vancouver Island where most of the island generation is located.
(b) Vancouver Island serving most of the industrial load and the west coast loads of Port Alberni and Long Beach.
(c) Southern Vancouver Island which is mainly residential and commercial.

About 22 percent of the Vancouver Island load is in the North, 46 percent is in the Central, and 32 percent is in the Southern Vancouver Island area.

In the area west of Victoria the three substations: Colwood, Sooke and Jordan River Generating Station are radially connected by a 138 kV circuit. The Jordan River Generating Station has a maximum output of 170 MVA. If an outage occurs between the areas of Colwood and Sooke, the generating station at Jordan River would be able to supply the combined demands for Colwood, Sooke, and Jordan River regions.

See also

Notes

    Related Research Articles

    Electric power transmission Bulk movement of electrical energy from a generating site to an electrical substation

    Electric power transmission is the bulk movement of electrical energy from a generating site, such as a power plant, to an electrical substation. The interconnected lines which facilitate this movement are known as a transmission network. This is distinct from the local wiring between high-voltage substations and customers, which is typically referred to as electric power distribution. The combined transmission and distribution network is part of electricity delivery, known as the electrical grid.

    Electric power distribution Final stage of electricity delivery to individual consumers in a power grid

    Electric power distribution is the final stage in the delivery of electric power; it carries electricity from the transmission system to individual consumers. Distribution substations connect to the transmission system and lower the transmission voltage to medium voltage ranging between 2 kV and 35 kV with the use of transformers. Primary distribution lines carry this medium voltage power to distribution transformers located near the customer's premises. Distribution transformers again lower the voltage to the utilization voltage used by lighting, industrial equipment and household appliances. Often several customers are supplied from one transformer through secondary distribution lines. Commercial and residential customers are connected to the secondary distribution lines through service drops. Customers demanding a much larger amount of power may be connected directly to the primary distribution level or the subtransmission level.

    Electric power industry Industry that provides the production and delivery of electric energy

    The electric power industry covers the generation, transmission, distribution and sale of electric power to the general public and industry. The commercial distribution of electric power started in 1882 when electricity was produced for electric lighting. In the 1880s and 1890s, growing economic and safety concerns lead to the regulation of the industry. What was once an expensive novelty limited to the most densely populated areas, reliable and economical electric power has become an essential aspect for normal operation of all elements of developed economies.

    The British Columbia Hydro and Power Authority, operating as BC Hydro, is a Canadian electric utility in the province of British Columbia. It is the main electricity distributor, serving 1.8 million customers in most areas, with the exception of the City of New Westminster, where the city runs its own electrical department and portions of the West Kootenay, Okanagan, the Boundary Country and Similkameen regions, where FortisBC, a subsidiary of Fortis Inc. directly provides electric service to 213,000 customers and supplies municipally owned utilities in the same area. As a provincial Crown corporation, BC Hydro reports to the BC Ministry of Energy, Mines and Low Carbon Innovation, and is regulated by the British Columbia Utilities Commission (BCUC). Its mandate is to generate, purchase, distribute and sell electricity.

    Manitoba Hydro Electric power and natural gas utility company in Manitoba, Canada

    The Manitoba Hydro-Electric Board, operating as Manitoba Hydro, is the electric power and natural gas utility in the province of Manitoba, Canada. Founded in 1961, it is a provincial Crown Corporation, governed by the Manitoba Hydro-Electric Board and the Manitoba Hydro Act. Today the company operates 15 interconnected generating stations. It has more than 527,000 electric power customers and more than 263,000 natural gas customers. Since most of the electrical energy is provided by hydroelectric power, the utility has low electricity rates. Stations in Northern Manitoba are connected by a HVDC system, the Nelson River Bipole, to customers in the south. The internal staff are members of the Canadian Union of Public Employees Local 998 while the outside workers are members of the International Brotherhood of Electrical Workers Local 2034.

    Hydro One Electricity transmission and distribution utility serving in Ontario, Canada

    Hydro One Limited is an electricity transmission and distribution utility serving the Canadian province of Ontario. Hydro One traces its history to the early 20th century and the establishment of the Hydro-Electric Power Commission of Ontario. In October 1998, the provincial legislature passed the Energy Competition Act which restructured Ontario Hydro into separate entities responsible for electrical generation, transmission/delivery, and price management with a final goal of total privatization.

    Electricity sector in Canada

    The electricity sector in Canada has played a significant role in the economic and political life of the country since the late 19th century. The sector is organized along provincial and territorial lines. In a majority of provinces, large government-owned integrated public utilities play a leading role in the generation, transmission, and distribution of electricity. Ontario and Alberta have created electricity markets in the last decade in order to increase investment and competition in this sector of the economy.

    National Grid (Malaysia)

    National Grid, Malaysia is the high-voltage electric power transmission network in Peninsular Malaysia. It is operated and owned by Tenaga Nasional Berhad (TNB) by its Transmission Division. There are two other electrical grids in Sabah and Sarawak operated by Sabah Electricity Sdn Bhd (SESB) and Sarawak Energy Berhad (SEB) respectively.

    FortisBC is an electricity and natural gas distribution utility in the Canadian province of British Columbia, a subsidiary of Newfoundland-based Fortis Inc., Canada’s largest private utility company. In March 2011, Terasen Gas, British Columbia's largest natural gas distributor, was renamed FortisBC Energy Inc., as both companies are owned by Fortis Inc.

    ITC Transmission

    ITC Transmission was founded in 1999 as International Transmission Co., a subsidiary of Detroit Edison, charged in the ownership, operation and maintenance of Detroit Edison's transmission system. In 2003, DTE sold the subsidiary to ITC Holdings Corp. In 2004, ITC Transmission became the first, fully independent electricity transmission company in the United States following the 2003 transfer of ownership from DTE Energy to ITC Transmission’s parent company, ITC Holdings Corp. ITC Transmission owns a fully regulated, high-voltage system that transmits electricity to local electricity distribution facilities. ITC Holdings Corp. became a publicly traded company in 2005 and is headquartered in Novi, Michigan. Today it owns transmission systems in several states under a unique independent business model.

    The electricity sector in New Zealand uses mainly renewable energy; such as hydropower, geothermal power and increasingly wind energy. As of 2019, 82% of electricity is generated from renewable sources, making New Zealand one of the countries with the lowest carbon dioxide emissions from electricity generation. Electricity demand grew by an average of 2.1% per year from 1974 to 2010 but decreased by 1.2% from 2010 to 2013.

    Hydro-Québecs electricity transmission system International power transmission system centred in Quebec, Canada

    Hydro-Québec's electricity transmission system is an international electric power transmission system centred in Quebec, Canada. The system pioneered the use of very high voltage 735-kilovolt (kV) alternating current (AC) power lines that link the population centres of Montreal and Quebec City to distant hydroelectric power stations like the Daniel-Johnson Dam and the James Bay Project in northwestern Quebec and the Churchill Falls Generating Station in Labrador.

    Jordan River Dam Dam on the Jordan River, British Columbia, Canada

    The Jordan River Dam, officially the Jordan River Diversion Dam, and known locally simply as Diversion Dam, is a dam located in Jordan River, British Columbia, Canada. It is part of the second hydroelectric development on Vancouver Island.

    Electrical grid Interconnected network for delivering electricity from suppliers to consumers

    An electrical grid is an interconnected network for electricity delivery from producers to consumers. Electrical grids vary in size and can cover whole countries or continents. It consists of:

    Whakamaru Dam Dam in Lake Whakamaru

    Whakamaru Power Station is a hydroelectric power station on the Waikato River, in the North Island of New Zealand. It is the fourth hydroelectric power station on the Waikato River.

    National Grid (New Zealand)

    The National Grid is the nationwide system of electric power transmission in New Zealand. The national electricity transmission grid is owned, operated, and maintained by state-owned enterprise Transpower New Zealand, although some lines are owned by local distribution companies and leased to Transpower. In total, the national grid contains 11,803 kilometres (7,334 mi) of high-voltage lines and 178 substations.

    History of electricity supply in Queensland

    The provision of electricity in Queensland required a considerable degree of pioneering, innovation, and commitment. Queensland proved to be a pioneer in the supply of electricity in Australia, with the first public demonstration in Australia, the first recorded use for public purposes in the country, the first Parliament House in Australia and the first commercial operations in Australia all occurring in Brisbane.

    Electricity sector in Hong Kong Electricity sector in Hong Kong, China

    Electricity sector in Hong Kong ranges from generation, transmission, distribution and sales of electricity covering Hong Kong. There are two main providers of electricity in Hong Kong.

    Juan de Fuca Cable Project

    The Juan de Fuca Cable Project is a proposed 550 MW, 150 kV high-voltage direct current (HVDC) submarine power cable connection running 19 miles (31 km) under the Strait of Juan de Fuca between Port Angeles, Washington, and Victoria, British Columbia. The project's final environmental impact statement was completed in October 2007, and a presidential permit issued in June 2008.

    Scottish and Southern Electricity Networks is one of two energy companies in the UK to be involved both in electricity transmission and distribution.

    References