This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations .(April 2009) |
The BERP rotor blade design was developed under the British Experimental Rotor Programme. The initial BERP rotor blades were developed in the late 1970s to mid-1980s as a joint venture programme between Westland Helicopters and the Royal Aircraft Establishment (RAE), with Professor Martin Lowson as a co-patentee. [1] The goal was to increase the helicopters lifting-capability and maximum speed using new designs and materials.
As objects approach the speed of sound, shock waves form in areas where the local flow is accelerated above the speed of sound. This normally occurs on curved areas, like cockpit windows, leading edges of the wing, and similar areas where Bernoulli's principle accelerates the air. These shock waves radiate away a great amount of energy that has to be supplied by the engines, which appears to the aircraft as a whole as a large amount of additional drag, known as wave drag. It was the onset of wave drag that gives rise to the idea of a sound barrier.
Helicopters have the additional problem that their rotors move in relation to the fuselage as they rotate. Even when hovering, the rotor tips may be travelling at a significant fraction of the speed of sound. As the helicopter accelerates, its overall speed is added to that of the tips, meaning that the blades on the forward-moving side of the rotor sees significantly higher airspeed than the rearward-moving side, causing a dissymmetry of lift. This requires changes in the angle of attack of the blades to ensure the lift is similar on both sides, in spite of the great differences in relative airflow.
It is the ability of the rotor to change its lift pattern that puts a limit on the forward speed of a helicopter; at some point the forward speed means the rearward-moving blades are below their stall speed. The point where this occurs can be improved by making the rotor spin faster, but then it faces the additional problem that at high speeds the forward-moving blades are approaching the speed of sound and begin to suffer from wave drag and other negative effects.
One solution to the problem of wave drag is the same that was seen on 1950s jet fighters, the use of wing sweep. This reduces the effect of wave drag without significant negative effects except at very low speeds. In the case of fighters, this was a concern, especially at landing, but in the case of helicopters, this is less of an issue because the rotor tips do not slow significantly, even during landing. Such swept-tips can be seen on many helicopters from the 1970s and 80s, notably the UH-60 Blackhawk and the AH-64 Apache.
However, to ensure that centre of gravity or aerodynamic centre movements aft of the blade elastic axis (which can introduce undesirable aerodynamic and inertial couplings) are not experienced, then the tip must be configured with an area shift forward. This can be kept to a minimum by recognizing that the Mach number is varying along the blade so we do not have to use a constant sweep angle, thereby minimizing the amount of forward area shift.
The methodology used in the design of the BERP blade ensures that the effective Mach number normal to the blade remains nominally constant over the swept region. The maximum sweep employed on the large part of the BERP blade is 30 degrees and the tip starts at a non-dimensional radius r/R=cos 30 = 86% radius. The area distribution of this tip region is configured to ensure that the mean tip centre of pressure is located on the elastic axis of the blade. This is done by offsetting the location of the local 1/4-chord axis forward at 86% radius.
This offset also produces a discontinuity in the leading edge (referred to as a notch), which results in other interesting effects. For example, recent calculations using a CFD code based on the Navier-Stokes equations, has shown that this "notch" actually helps to further reduce the strength of shock waves on the blade. Thus, an unexpected by-product of the notch over and above the basic effect of sweep is to help to reduce compressibility effects even further.
We must also recognize that a swept tip geometry of this sort will not necessarily improve the performance of the blade at high angle of attack corresponding to the retreating side of the disk. In fact, experience has shown that a swept tip blade can have an inferior stalling characteristic compared to the standard blade tip.
The BERP blade employs a final geometry that performs as a swept tip at high Mach numbers and low angles of attack, yet also enables the tip to operate at very high angles of attack without stalling. This latter attribute was obtained by radically increasing the sweep of the outermost part of the tip (the outer 2% approximately) to a value (70 degrees) where any significant angle of attack will cause leading edge flow separation.
Because the leading edge is so highly swept, this leading edge separation develops into a vortex structure which rolls around the leading edge and eventually sits over the upper surface (as on a delta wing aircraft). This mechanism is enhanced by making the leading edge of the aerofoil in this region relatively sharp.
As the angle of attack is increased, then this vortex begins to develop from a point further and further forward along the leading edge, following the planform geometry into the more moderately swept region. At a sufficiently high angle of attack, the vortex will initiate close to the forward most part of the leading edge near the "notch" region.
Evidence has shown that a strong "notch" vortex is also formed, which is trailed streamwise across the blade. This vortex acts like an aerodynamic fence and retards the flow separation region from encroaching into the tip region. Further increases in angle of attack make little change to the flow structure until a very high angle of attack is reached (in the vicinity of 22 degrees!) when the flow will grossly separate. For a conventional tip planform, a similar gross flow breakdown would be expected to occur at about 12 degrees local angle of attack.
Therefore, the BERP blade manages to make the best of both worlds by reducing compressibility effects on the advancing blade and delaying the onset of retreating blade stall. The net result is a significant increase in the operational flight envelope.
The initial programme, BERP I, studied the design, manufacture and qualification of composite rotor blades. This resulted in producing new main rotor and tail rotor blades for the Westland Sea King. Following on from the first, the second programme, BERP II, analysed advanced aerofoil sections for future rotor blades. This fed into the BERP III programme.
BERP III designs have a notch toward the outer end of the rotor blade, with a greater amount of sweepback from the notch to the end of the blade compared to inboard of the notch. [2] BERP III culminated in a technology demonstration on a Westland Lynx helicopter. [3] In 1986, a Lynx specially modified registered G-LYNX and piloted by Trevor Egginton set an absolute speed record for helicopters over a 15 and 25 km course by reaching 400.87 km/h (249.09 mph). [2] Following the successful technology demonstration, the BERP III blade went into production.
BERP IV uses: a new aerofoil, revised blade tip shape, and increased blade twist. After 29 hours of testing it has been found to, "improve rotor flight-envelope performance, reduce power needs in hover and forward flight, ... decrease airframe and engine vibration for a range of take-off weights." [4] Additionally "Rotor hub loading has been found to be the same or less than with the BERP III blade now fitted to the EH101" helicopter. [4] To prevent leading edge erosion the blade will use a rubber-based tape rather than the polyurethane used on UK navy Sea Kings. Under test it was found to last five times longer, 195 minutes vs 39 min. The programme ended in August 2007 [4]
Current applications are:
A wing is a type of fin that produces lift while moving through air or some other fluid. Accordingly, wings have streamlined cross-sections that are subject to aerodynamic forces and act as airfoils. A wing's aerodynamic efficiency is expressed as its lift-to-drag ratio. The lift a wing generates at a given speed and angle of attack can be one to two orders of magnitude greater than the total drag on the wing. A high lift-to-drag ratio requires a significantly smaller thrust to propel the wings through the air at sufficient lift.
In fluid dynamics, a stall is a reduction in the lift coefficient generated by a foil as angle of attack increases. This occurs when the critical angle of attack of the foil is exceeded. The critical angle of attack is typically about 15°, but it may vary significantly depending on the fluid, foil, and Reynolds number.
A delta wing is a wing shaped in the form of a triangle. It is named for its similarity in shape to the Greek uppercase letter delta (Δ).
A vortex generator (VG) is an aerodynamic device, consisting of a small vane usually attached to a lifting surface or a rotor blade of a wind turbine. VGs may also be attached to some part of an aerodynamic vehicle such as an aircraft fuselage or a car. When the airfoil or the body is in motion relative to the air, the VG creates a vortex, which, by removing some part of the slow-moving boundary layer in contact with the airfoil surface, delays local flow separation and aerodynamic stalling, thereby improving the effectiveness of wings and control surfaces, such as flaps, elevators, ailerons, and rudders.
A swept wing is a wing that angles either backward or occasionally forward from its root rather than in a straight sideways direction.
An airfoil or aerofoil is a streamlined body that is capable of generating significantly more lift than drag. Wings, sails and propeller blades are examples of airfoils. Foils of similar function designed with water as the working fluid are called hydrofoils.
On a helicopter, the main rotor or rotor system is the combination of several rotary wings with a control system, that generates the aerodynamic lift force that supports the weight of the helicopter, and the thrust that counteracts aerodynamic drag in forward flight. Each main rotor is mounted on a vertical mast over the top of the helicopter, as opposed to a helicopter tail rotor, which connects through a combination of drive shaft(s) and gearboxes along the tail boom. The blade pitch is typically controlled by the pilot using the helicopter flight controls. Helicopters are one example of rotary-wing aircraft (rotorcraft). The name is derived from the Greek words helix, helik-, meaning spiral; and pteron meaning wing.
Vortex lift is that portion of lift due to the action of leading edge vortices. It is generated by wings with highly sweptback, sharp, leading edges or highly-swept wing-root extensions added to a wing of moderate sweep. It is sometimes known as non-linear lift due to its rapid increase with angle of attack. and controlled separation lift, to distinguish it from conventional lift which occurs with attached flow.
Unequal rotor lift distribution is an effect where the blades of a helicopter rotor generate more lift at the rotor tips than at the rotor hub.
An aircraft propeller, also called an airscrew, converts rotary motion from an engine or other power source into a swirling slipstream which pushes the propeller forwards or backwards. It comprises a rotating power-driven hub, to which are attached several radial airfoil-section blades such that the whole assembly rotates about a longitudinal axis. The blade pitch may be fixed, manually variable to a few set positions, or of the automatically variable "constant-speed" type.
Dissymmetry of lift in rotorcraft aerodynamics refers to an unequal amount of lift on opposite sides of the rotor disc. It is a phenomenon that affects single-rotor helicopters and autogyros in forward flight.
Autorotation is a state of flight in which the main rotor system of a helicopter or other rotary-wing aircraft turns by the action of air moving up through the rotor, as with an autogyro, rather than engine power driving the rotor. The term autorotation dates to a period of early helicopter development between 1915 and 1920, and refers to the rotors turning without the engine. It is analogous to the gliding flight of a fixed-wing aircraft. Autorotation has also evolved to be used by certain trees as a means of disseminating their seeds further.
The Bölkow Bo 46 was a West German experimental helicopter built to test the Derschmidt rotor system that aimed to allow much higher speeds than traditional helicopter designs. Wind tunnel testing showed promise, but the Bo 46 demonstrated a number of problems and added complexity that led to the concept being abandoned. The Bo 46 was one of a number of new designs exploring high-speed helicopter flight that were built in the early 1960s.
Washout is a characteristic of aircraft wing design which deliberately reduces the lift distribution across the span of an aircraft’s wing. The wing is designed so that the angle of incidence is greater at the wing roots and decreases across the span, becoming lowest at the wing tip. This is usually to ensure that at stall speed the wing root stalls before the wing tips, providing the aircraft with continued aileron control and some resistance to spinning. Washout may also be used to modify the spanwise lift distribution to reduce lift-induced drag.
The wing configuration of a fixed-wing aircraft is its arrangement of lifting and related surfaces.
The primary application of wind turbines is to generate energy using the wind. Hence, the aerodynamics is a very important aspect of wind turbines. Like most machines, wind turbines come in many different types, all of them based on different energy extraction concepts.
The slowed rotor principle is used in the design of some helicopters. On a conventional helicopter the rotational speed of the rotor is constant; reducing it at lower flight speeds can reduce fuel consumption and enable the aircraft to fly more economically. In the compound helicopter and related aircraft configurations such as the gyrodyne and winged autogyro, reducing the rotational speed of the rotor and offloading part of its lift to a fixed wing reduces drag, enabling the aircraft to fly faster.
Vortilons are fixed aerodynamic devices on aircraft wings used to improve handling at low speeds.
A cyclorotor, cycloidal rotor, cycloidal propeller or cyclogiro, is a fluid propulsion device that converts shaft power into the acceleration of a fluid using a rotating axis perpendicular to the direction of fluid motion. It uses several blades with a spanwise axis parallel to the axis of rotation and perpendicular to the direction of fluid motion. These blades are cyclically pitched twice per revolution to produce force in any direction normal to the axis of rotation. Cyclorotors are used for propulsion, lift, and control on air and water vehicles. An aircraft using cyclorotors as the primary source of lift, propulsion, and control is known as a cyclogyro or cyclocopter. A unique aspect is that it can change the magnitude and direction of thrust without the need of tilting any aircraft structures. The patented application, used on ships with particular actuation mechanisms both mechanical or hydraulic, is named after German company Voith Turbo.
The dynamic stall is one of the hazardous phenomena on helicopter rotors, which can cause the onset of large torsional airloads and vibrations on the rotor blades. Unlike fixed-wing aircraft, of which the stall occurs at relatively low flight speed, the dynamic stall on a helicopter rotor emerges at high airspeeds or/and during manoeuvres with high load factors of helicopters, when the angle of attack(AOA) of blade elements varies intensively due to time-dependent blade flapping, cyclic pitch and wake inflow. For example, during forward flight at the velocity close to VNE, velocity, never exceed, the advancing and retreating blades almost reach their operation limits whereas flows are still attached to the blade surfaces. That is, the advancing blades operate at high Mach numbers so low values of AOA is needed but shock-induced flow separation may happen, while the retreating blade operates at much lower Mach numbers but the high values of AoA result in the stall.