BOP reagent

Last updated
BOP reagent
BOP reagent.svg
Names
IUPAC name
((1H-Benzo[d][1,2,3]triazol-1-yl)oxy)tris(dimethylamino)phosphonium hexafluorophosphate(V)
Other names
Castro's reagent
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.054.782 OOjs UI icon edit-ltr-progressive.svg
PubChem CID
UNII
  • InChI=1S/C12H22N6OP.F6P/c1-15(2)20(16(3)4,17(5)6)19-18-12-10-8-7-9-11(12)13-14-18;1-7(2,3,4,5)6/h7-10H,1-6H3;/q+1;-1 Yes check.svgY
    Key: MGEVGECQZUIPSV-UHFFFAOYSA-N Yes check.svgY
  • F[P-](F)(F)(F)(F)F.n1nn(O[P+](N(C)C)(N(C)C)N(C)C)c2ccccc12
Properties
C12H22F6N6OP2
Molar mass 442.287 g/mol
AppearanceWhite crystalline powder
Melting point 136 to 140 °C (277 to 284 °F; 409 to 413 K)
Partially soluble in cold water reacts (decomposes)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

BOP (benzotriazol-1-yloxytris(dimethylamino)phosphonium hexafluorophosphate) is a reagent commonly used for the synthesis of amides from carboxylic acids and amines in peptide synthesis. [1] [2] It can be prepared from 1-hydroxybenzotriazole and a chlorophosphonium reagent under basic conditions. [3] This reagent has advantages in peptide synthesis since it avoids side reactions like the dehydration of asparagine or glutamine redisues. [4] BOP has used for the synthesis of esters from the carboxylic acids and alcohols. [5] BOP has also been used in the reduction of carboxylic acids to primary alcohols with sodium borohydride (NaBH4). [6] Its use raises safety concerns since the carcinogenic compound HMPA is produced as a stoichiometric by-product.

See also

Related Research Articles

<span class="mw-page-title-main">Ester</span> Compound derived from an acid

In chemistry, an ester is a functional group derived from an acid in which the hydrogen atom (H) of at least one acidic hydroxyl group of that acid is replaced by an organyl group. Analogues derived from oxygen replaced by other chalcogens belong to the ester category as well. According to some authors, organyl derivatives of acidic hydrogen of other acids are esters as well, but not according to the IUPAC.

<span class="mw-page-title-main">Protecting group</span> Group of atoms introduced into a compound to prevent subsequent reactions

A protecting group or protective group is introduced into a molecule by chemical modification of a functional group to obtain chemoselectivity in a subsequent chemical reaction. It plays an important role in multistep organic synthesis.

<span class="mw-page-title-main">Sodium borohydride</span> Chemical compound

Sodium borohydride, also known as sodium tetrahydridoborate and sodium tetrahydroborate, is an inorganic compound with the formula NaBH4. It is a white crystalline solid, usually encountered as an aqueous basic solution. Sodium borohydride is a reducing agent that finds application in papermaking and dye industries. It is also used as a reagent in organic synthesis.

<span class="mw-page-title-main">Peptide synthesis</span> Production of peptides

In organic chemistry, peptide synthesis is the production of peptides, compounds where multiple amino acids are linked via amide bonds, also known as peptide bonds. Peptides are chemically synthesized by the condensation reaction of the carboxyl group of one amino acid to the amino group of another. Protecting group strategies are usually necessary to prevent undesirable side reactions with the various amino acid side chains. Chemical peptide synthesis most commonly starts at the carboxyl end of the peptide (C-terminus), and proceeds toward the amino-terminus (N-terminus). Protein biosynthesis in living organisms occurs in the opposite direction.

<span class="mw-page-title-main">Curtius rearrangement</span> Chemical reaction

The Curtius rearrangement, first defined by Theodor Curtius in 1885, is the thermal decomposition of an acyl azide to an isocyanate with loss of nitrogen gas. The isocyanate then undergoes attack by a variety of nucleophiles such as water, alcohols and amines, to yield a primary amine, carbamate or urea derivative respectively. Several reviews have been published.

<span class="mw-page-title-main">Carbonyldiimidazole</span> Chemical compound

1,1'-Carbonyldiimidazole (CDI) is an organic compound with the molecular formula (C3H3N2)2CO. It is a white crystalline solid. It is often used for the coupling of amino acids for peptide synthesis and as a reagent in organic synthesis.

The Weinreb ketone synthesis or Weinreb–Nahm ketone synthesis is a chemical reaction used in organic chemistry to make carbon–carbon bonds. It was discovered in 1981 by Steven M. Weinreb and Steven Nahm as a method to synthesize ketones. The original reaction involved two subsequent nucleophilic acyl substitutions: the conversion of an acid chloride with N,O-Dimethylhydroxylamine, to form a Weinreb–Nahm amide, and subsequent treatment of this species with an organometallic reagent such as a Grignard reagent or organolithium reagent. Nahm and Weinreb also reported the synthesis of aldehydes by reduction of the amide with an excess of lithium aluminum hydride.

Di-<i>tert</i>-butyl dicarbonate Chemical compound

Di-tert-butyl dicarbonate is a reagent widely used in organic synthesis. Since this compound can be regarded formally as the acid anhydride derived from a tert-butoxycarbonyl (Boc) group, it is commonly referred to as Boc anhydride. This pyrocarbonate reacts with amines to give N-tert-butoxycarbonyl or so-called Boc derivatives. These carbamate derivatives do not behave as amines, which allows certain subsequent transformations to occur that would be incompatible with the amine functional group. The Boc group can later be removed from the amine using moderately strong acids. Thus, Boc serves as a protective group, for instance in solid phase peptide synthesis. Boc-protected amines are unreactive to most bases and nucleophiles, allowing for the use of the fluorenylmethyloxycarbonyl group (Fmoc) as an orthogonal protecting group.

<span class="mw-page-title-main">PyBOP</span> Chemical compound

PyBOP is a reagent used to prepare amides from carboxylic acids and amines in the context of peptide synthesis. It can be prepared from 1-hydroxybenzotriazole and a chlorophosphonium reagent under basic conditions. It is a substitute for the BOP reagent that avoids the formation of the carcinogenic waste product HMPA. Thermal hazard analysis by differential scanning calorimetry (DSC) shows PyBOP is potentially explosive.

<span class="mw-page-title-main">Lithium triethylborohydride</span> Chemical compound

Lithium triethylborohydride is the organoboron compound with the formula LiEt3BH. Commonly referred to as LiTEBH or Superhydride, it is a powerful reducing agent used in organometallic and organic chemistry. It is a colorless or white liquid but is typically marketed and used as a THF solution. The related reducing agent sodium triethylborohydride is commercially available as toluene solutions.

The Bergmann degradation is a series of chemical reactions designed to remove a single amino acid from the carboxylic acid (C-terminal) end of a peptide. First demonstrated by Max Bergmann in 1934, it is a rarely used method for sequencing peptides. The later developed Edman degradation is an improvement upon the Bergmann degradation, instead cleaving the N-terminal amino acid of peptides to produce a hydantoin containing the desired amino acid.

The Fukuyama coupling is a coupling reaction taking place between a thioester and an organozinc halide in the presence of a palladium catalyst. The reaction product is a ketone. This reaction was discovered by Tohru Fukuyama et al. in 1998.

<span class="mw-page-title-main">Achmatowicz reaction</span> Organic synthesis

The Achmatowicz reaction, also known as the Achmatowicz rearrangement, is an organic synthesis in which a furan is converted to a dihydropyran. In the original publication by the Polish Chemist Osman Achmatowicz Jr. in 1971 furfuryl alcohol is reacted with bromine in methanol to 2,5-dimethoxy-2,5-dihydrofuran which rearranges to the dihydropyran with dilute sulfuric acid. Additional reaction steps, alcohol protection with methyl orthoformate and boron trifluoride) and then ketone reduction with sodium borohydride produce an intermediate from which many monosaccharides can be synthesised.

<span class="mw-page-title-main">Carbonyl reduction</span> Organic reduction of any carbonyl group by a reducing agent

In organic chemistry, carbonyl reduction is the conversion of any carbonyl group, usually to an alcohol. It is a common transformation that is practiced in many ways. Ketones, aldehydes, carboxylic acids, esters, amides, and acid halides - some of the most pervasive functional groups, -comprise carbonyl compounds. Carboxylic acids, esters, and acid halides can be reduced to either aldehydes or a step further to primary alcohols, depending on the strength of the reducing agent. Aldehydes and ketones can be reduced respectively to primary and secondary alcohols. In deoxygenation, the alcohol group can be further reduced and removed altogether by replacement with H.

The Chan–Lam coupling reaction – also known as the Chan–Evans–Lam coupling is a cross-coupling reaction between an aryl boronic acid and an alcohol or an amine to form the corresponding secondary aryl amines or aryl ethers, respectively. The Chan–Lam coupling is catalyzed by copper complexes. It can be conducted in air at room temperature. The more popular Buchwald–Hartwig coupling relies on the use of palladium.

<span class="mw-page-title-main">HBTU</span> Chemical compound

HBTU is a coupling reagent used in solid phase peptide synthesis. It was introduced in 1978 and shows resistance against racemization. It is used because of its mild activating properties.

<span class="mw-page-title-main">PyAOP reagent</span> Chemical compound

PyAOP is a reagent used to prepare amides from carboxylic acids and amines in the context of peptide synthesis. It can be prepared from 1-hydroxy-7-azabenzotriazole (HOAt) and a chlorophosphonium reagent under basic conditions. It is a derivative of the HOAt family of amide bond forming reagents. It is preferred over HATU, because it does not engage in side reactions with the N-terminus of the peptide. Compared to the HOBt-containing analog PyBOP, PyAOP is more reactive due to the additional nitrogen in the fused pyridine ring of the HOAt moiety. Thermal hazard analysis by differential scanning calorimetry (DSC) shows PyAOP is potentially explosive.

<span class="mw-page-title-main">DMTMM</span> Chemical compound

DMTMM is an organic triazine derivative commonly used for activation of carboxylic acids, particularly for amide synthesis. Amide coupling is one of the most common reactions in organic chemistry and DMTMM is one reagent used for that reaction. The mechanism of DMTMM coupling is similar to other common amide coupling reactions involving activated carboxylic acids. Its precursor, 2-chloro-4,6,-dimethoxy-1,3,5-triazine (CDMT), has also been used for amide coupling. DMTMM has also been used to synthesize other carboxylic functional groups such as esters and anhydrides. DMTMM is usually used in the chloride form but the tetrafluoroborate salt is also commercially available.

<span class="mw-page-title-main">3-Dimethylaminoacrolein</span> Chemical compound

3-Dimethylaminoacrolein is an organic compound with the formula Me2NC(H)=CHCHO. It is a pale yellow water-soluble liquid. The compound has a number of useful and unusual properties, e.g. it "causes a reversal of the hypnotic effect of morphine in mice" and has a "stimulating effect in humans".

<span class="mw-page-title-main">TCFH</span> Chemical compound

TCFH is an electrophilic amidine reagent used to activate a number of functional groups for reaction with nucleophilies. TCFH is most commonly used to activate carboxylic acids for reaction with amines in the context of amide bond formation and peptide synthesis.

References

  1. "(Benzotriazol-1-yloxy)tris(dimethylamino)phosphonium hexafluorophosphate 226084". BOP Reagent. Retrieved 2020-02-11.
  2. Mansour, Tarek S.; Bardhan, Sujata; Wan, Zhao-Kui (2010). "Phosphonium- and Benzotriazolyloxy-Mediated Bond-Forming Reactions and Their Synthetic Applications". Synlett. 2010 (08): 1143–1169. doi:10.1055/s-0029-1219820. ISSN   0936-5214.
  3. Hoffmann, Frank; Jäger, Lothar; Griehl, Carola (2003-02-01). "Synthesis and Chemical Constitution of Diphenoxyphosphoryl Derivatives and Phosphonium Salts as Coupling Reagents for Peptide Segment Condensation". Phosphorus, Sulfur, and Silicon and the Related Elements. 178 (2): 299–309. doi:10.1080/10426500307942. ISSN   1042-6507.
  4. Prasad, KVSRG; Bharathi, K; Haseena, Banu B (2011). "Applications of Peptide Coupling Reagents- An Update" (PDF). International Journal of Pharmaceutical Sciences Review and Research. 8 (1): 108–119.
  5. Kim, Moon H.; Patel, Dinesh V. (1994-08-01). ""BOP" as a reagent for mild and efficient preparation of esters". Tetrahedron Letters. 35 (31): 5603–5606. doi:10.1016/S0040-4039(00)77257-1. ISSN   0040-4039.
  6. McGeary, Ross P. (1998). "Facile and chemoselective reduction of carboxylic acids to alcohols using BOP reagent and sodium borohydride". Tetrahedron Letters. 39 (20): 3319–3322. doi:10.1016/S0040-4039(98)00480-8. ISSN   0040-4039.