Bacteroides caccae

Last updated

Bacteroides caccae
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Bacteria
Phylum: Bacteroidota
Class: Bacteroidia
Order: Bacteroidales
Family: Bacteroidaceae
Genus: Bacteroides
Species:
B. caccae
Binomial name
Bacteroides caccae
Johnson et al. 1986 [1]

Bacteroides caccae is a saccharolytic gram-negative bacterium from the genus Bacteroides . [2] [3] They are obligate anaerobes first isolated from human feces in the 1980s. Prior to their discovery, they were known as the 3452A DNA homology group. The type strain is now identified as ATCC 43185. [4]

Contents

Cell morphology and physiology

Bacteroides caccae is a saccharolytic anaerobic, nonmotile Gram-negative bacteria. They have a DNA GC content of 40-46 mol %. Growth occurs at human temperature (37 °C) under anaerobic conditions. There is no growth at 25 °C or 45 °C. Its cell shapes are rods that are 1.4-1.6 by 2.5-12 μm in size. [5] The rods are found in single cells or in pairs. In a broth culture mixed with a fermentable carbohydrate, the cells will appear vacuolated or beaded. The surface colonies of cells grown on BHI blood agar plates following 48 hours of incubation show a circular cell of 0.5–1 mm in diameter. In addition, colonies are convex, gray, translucent, shiny, and smooth. [5] Growth on rabbit blood shows slight hemolysis. In glucose broth, the cultures appear turbid with a smooth sediment and a final pH range of 5 – 5.2.

The type strain reduces neutral red but does not produce hydrogen sulfide. Growth on peptone-yeast extract-glucose broth cultures with 20% bile yields vast amounts of acetate and succinate but minor amounts of propionate and isovalerate. Lactate and threonine are not used by the type strain. B. caccae produces a trace amount of (0.1%) of hydrogen. They hydrolyze esculin, weakly digest gelatin, and are susceptible to chloramphenicol and clindamycin, but not susceptible to penicillin G and tetracycline.

Pathogenicity

For the onset of intestinal bowel diseases (IBD) such as Crohn's disease (CD) or Ulcerative colitis (UC), commensal enteric bacteria are generally required as a pathogenic factor. B. caccae contains a TonB-linked outer membrane protein called OmpW that has only been characterized in this particular strain. [6] The OmpW protein contains features similar to a bacterial TonB-linked outer membrane protein which allows the bacteria to increase its ability of iron or vitamin uptake in an environment where it lacks these variables. The TonB-linked outer membrane protein contains a TonB box that is highly conserved and also present in OmpW. [6] OmpW may play a role in facilitating the organism's ability to uptake substrates that are important for commensal bacterial survival in the intestine. The immunological finding of OmpW is an elevation of anti-OmpW IgA levels in some patients with Crohn's disease in comparison to these IgA levels in patients with ulcerative colitis or healthy subjects. [6] More remains to be elucidated on its potential pathogenicity with regards to OmpW. In addition, B. caccae has also been found in cultures from infections in the appendix and the abdomen (peritoneal) [7]

Metabolism

Bacteroides caccae was specified as being a fiber-degrading microbial specialist in the microbiomes of Western individuals. [8] In a study geared at determining the fermentation of pectin in B. caccae from a rabbit cecum, it was determined that cultures grown with pectin produced more acetate than formate, lactate, fumarate, and succinate as opposed to those cultures grown on glucose which yielded vast amounts of lactate. [9] This elucidates the metabolism of a plant fiber by a human commensal. In addition, B. caccae showed no growth on arabinan (a pectin), arabinoxylan (wheat), xylan, xyloglucan, glucomannan, galactomannan, B-glucan, lichenin, and laminarin. [10] They do grow on host-derived glycans like neutral mucin O-glycans, chondroitin sulfate, and hyaluronic acid. The monosaccharides that induce growth are arabinose, fructose, fucose, galactose, galacturonic acid, glucose, glucuronic acid, glucosamine, mannose, N-acetylgalactosamine, N-acetylglucosamine, N-acetylneuraminic acid, rhamnose, ribose, and xylose [10]

Related Research Articles

<i>Escherichia coli</i> Enteric, rod-shaped, gram-negative bacterium

Escherichia coli ( ESH-ə-RIK-ee-ə KOH-ly) is a gram-negative, facultative anaerobic, rod-shaped, coliform bacterium of the genus Escherichia that is commonly found in the lower intestine of warm-blooded organisms. Most E. coli strains are harmless, but some serotypes such as EPEC, and ETEC are pathogenic and can cause serious food poisoning in their hosts, and are occasionally responsible for food contamination incidents that prompt product recalls. Most strains are part of the normal microbiota of the gut and are harmless or even beneficial to humans (although these strains tend to be less studied than the pathogenic ones). For example, some strains of E. coli benefit their hosts by producing vitamin K2 or by preventing the colonization of the intestine by pathogenic bacteria. These mutually beneficial relationships between E. coli and humans are a type of mutualistic biological relationship — where both the humans and the E. coli are benefitting each other. E. coli is expelled into the environment within fecal matter. The bacterium grows massively in fresh fecal matter under aerobic conditions for three days, but its numbers decline slowly afterwards.

<i>Treponema pallidum</i> Species of bacterium

Treponema pallidum, formerly known as Spirochaeta pallida, is a microaerophilic spirochaete bacterium with subspecies that cause the diseases syphilis, bejel, and yaws. It is known to be transmitted only among humans and baboons. It is a helically coiled microorganism usually 6–15 μm long and 0.1–0.2 μm wide. T. pallidum's lack of both a tricarboxylic acid cycle and processes for oxidative phosphorylation results in minimal metabolic activity. The treponemes have cytoplasmic and outer membranes. Using light microscopy, treponemes are visible only by using dark-field illumination. T. pallidum consists of three subspecies, T. p. pallidum, T. p. endemicum, and T. p. pertenue, each of which has a distinct associated disease.

Gluconeogenesis (GNG) is a metabolic pathway that results in the biosynthesis of glucose from certain non-carbohydrate carbon substrates. It is a ubiquitous process, present in plants, animals, fungi, bacteria, and other microorganisms. In vertebrates, gluconeogenesis occurs mainly in the liver and, to a lesser extent, in the cortex of the kidneys. It is one of two primary mechanisms – the other being degradation of glycogen (glycogenolysis) – used by humans and many other animals to maintain blood sugar levels, avoiding low levels (hypoglycemia). In ruminants, because dietary carbohydrates tend to be metabolized by rumen organisms, gluconeogenesis occurs regardless of fasting, low-carbohydrate diets, exercise, etc. In many other animals, the process occurs during periods of fasting, starvation, low-carbohydrate diets, or intense exercise.

<span class="mw-page-title-main">Bacteroidota</span> Phylum of Gram-negative bacteria

The phylum Bacteroidota is composed of three large classes of Gram-negative, nonsporeforming, anaerobic or aerobic, and rod-shaped bacteria that are widely distributed in the environment, including in soil, sediments, and sea water, as well as in the guts and on the skin of animals.

Fatty acid metabolism consists of various metabolic processes involving or closely related to fatty acids, a family of molecules classified within the lipid macronutrient category. These processes can mainly be divided into (1) catabolic processes that generate energy and (2) anabolic processes where they serve as building blocks for other compounds.

Fusarium venenatum is a microfungus of the genus Fusarium that has a high protein content. One of its strains is used commercially for the production of the single cell protein mycoprotein Quorn.

The Transporter Classification Database is an International Union of Biochemistry and Molecular Biology (IUBMB)-approved classification system for membrane transport proteins, including ion channels.

<i>Bacteroides fragilis</i> Species of bacterium

Bacteroides fragilis is an anaerobic, Gram-negative, pleomorphic to rod-shaped bacterium. It is part of the normal microbiota of the human colon and is generally commensal, but can cause infection if displaced into the bloodstream or surrounding tissue following surgery, disease, or trauma.

Leuconostoc mesenteroides is a species of lactic acid bacteria associated with fermentation, under conditions of salinity and low temperatures. In some cases of vegetable and food storage, it was associated with pathogenicity. L. mesenteroides is approximately 0.5-0.7 μm in diameter and has a length of 0.7-1.2 μm, producing small grayish colonies that are typically less than 1.0 mm in diameter. It is facultatively anaerobic, Gram-positive, non-motile, non-sporogenous, and spherical. It often forms lenticular coccoid cells in pairs and chains, however, it can occasionally form short rods with rounded ends in long chains, as its shape can differ depending on what media the species is grown on. L. mesenteroides grows best at 30 °C, but can survive in temperatures ranging from 10 °C to 30 °C. Its optimum pH is 5.5, but can still show growth in pH of 4.5-7.0.

The Pasteur effect describes how available oxygen inhibits ethanol fermentation, driving yeast to switch toward aerobic respiration for increased generation of the energy carrier adenosine triphosphate (ATP). More generally, in the medical literature, the Pasteur effect refers to how the cellular presence of oxygen causes in cells a decrease in the rate of glycolysis and also a suppression of lactate accumulation. The effect occurs in animal tissues, as well as in microorganisms belonging to the fungal kingdom.

Fusobacterium polymorphum is a subspecies strain of the anaerobic, Gram-negative bacterium, Fusobacterium nucleatum. Originally, it was isolated from the plaque samples of individuals diagnosed with periodontitis and has been phylogenetically identified as its own distinct sub-group, separate from its previously studied sister strains. Research studies have also linked this subspecies to human diseases, such as fatal sepsis and inflammatory periodontal disease.

<span class="mw-page-title-main">Sodium/glucose cotransporter 1</span>

Sodium/glucose cotransporter 1 (SGLT1) also known as solute carrier family 5 member 1 is a protein in humans that is encoded by the SLC5A1 gene which encodes the production of the SGLT1 protein to line the absorptive cells in the small intestine and the epithelial cells of the kidney tubules of the nephron for the purpose of glucose uptake into cells. Recently, it has been seen to have functions that can be considered as promising therapeutic target to treat diabetes and obesity. Through the use of the sodium glucose cotransporter 1 protein, cells are able to obtain glucose which is further utilized to make and store energy for the cell.

Faecalibacterium is a genus of bacteria. The genus contains several species including Faecalibacterium prausnitzii, Faecalibacterium butyricigenerans, Faecalibacterium longum, Faecalibacterium duncaniae, Faecalibacterium hattorii, and Faecalibacterium gallinarum. Its first known species, Faecalibacterium prausnitzii is gram-positive, mesophilic, rod-shaped, and anaerobic, and is one of the most abundant and important commensal bacteria of the human gut microbiota. It is non-spore forming and non-motile. These bacteria produce butyrate and other short-chain fatty acids through the fermentation of dietary fiber. The production of butyrate makes them an important member of the gut microbiota, fighting against inflammation.

<i>Cyanothece</i> Genus of bacteria

Cyanothece is a genus of unicellular, diazotrophic, oxygenic photosynthesizing cyanobacteria.

Mycoplasma orale is a small bacterium found in the class Mollicutes. It belongs to the genus Mycoplasma, a well-known group of bacterial parasites that inhabit humans. It also is known to be an opportunistic pathogen in immunocompromised humans. As with other Mycoplasma species, M. orale is not readily treated with many antibiotics due to its lack of a peptidoglycan cell wall. Therefore, this species is relevant to the medical field as physicians face the task of treating patients infected with this microbe. It is characterized by a small physical size, a small genome size, and a limited metabolism. It is also known to frequently contaminate laboratory experiments. This bacteria is very similar physiologically and morphologically to its sister species within the genus Mycoplasma; however, its recent discovery leaves many questions still unanswered about this microbe.

Mycoplasma alligatoris is a species of bacteria in the genus Mycoplasma. It is classified in the family Mycoplasmataceae, order Mycoplasma, class Mollicutes, phylum Firmicutes and domain Bacteria. Many organisms of the genus Mycoplasma are known pathogens in humans and animal species. Mycoplasma alligatoris is known to elicit a fatal disease with inflammatory characteristics that can cause rapid death of alligators and caimans.

<i>Neisseria flavescens</i> Species of bacterium

Neisseria flavescens was first isolated from cerebrospinal fluid in the midst of an epidemic meningitis outbreak in Chicago. These gram-negative, aerobic bacteria reside in the mucosal membranes of the upper respiratory tract, functioning as commensals. However, this species can also play a pathogenic role in immunocompromised and diabetic individuals. In rare cases, it has been linked to meningitis, pneumonia, empyema, endocarditis, and sepsis.

Methanogens are a group of microorganisms that produce methane as a byproduct of their metabolism. They play an important role in the digestive system of ruminants. The digestive tract of ruminants contains four major parts: rumen, reticulum, omasum and abomasum. The food with saliva first passes to the rumen for breaking into smaller particles and then moves to the reticulum, where the food is broken into further smaller particles. Any indigestible particles are sent back to the rumen for rechewing. The majority of anaerobic microbes assisting the cellulose breakdown occupy the rumen and initiate the fermentation process. The animal absorbs the fatty acids, vitamins and nutrient content on passing the partially digested food from the rumen to the omasum. This decreases the pH level and initiates the release of enzymes for further breakdown of the food which later passes to the abomasum to absorb remaining nutrients before excretion. This process takes about 9–12 hours.

<i>Bacteroides thetaiotaomicron</i> Species of bacterium

Bacteroides thetaiotaomicron is a gram-negative, rod shaped obligate anaerobic bacterium that is a prominent member of the normal gut microbiome in the distal intestines. Its proteome, consisting of 4,779 members, includes a system for obtaining and breaking down dietary polysaccharides that would otherwise be difficult to digest. B. thetaiotaomicron is also an opportunistic pathogen, meaning it may become virulent in immunocompromised individuals. It is often used in research as a model organism for functional studies of the human microbiota.

<i>Phocaeicola vulgatus</i> Species of bacteria

Phocaeicola vulgatus,, is a mutualistic anaerobic Gram negative rod bacteria commonly found in the human gut microbiome and isolated from feces. P. vulgatus has medical relevance and has been notable in scientific research due to its production of fatty acids, potential use as a probiotic, and associations with protecting against and worsening some inflammatory diseases. Due to the difficulties in culturing anaerobic bacteria, P. vulgatus is still highly uncharacterised so efforts are being made to make use of multi-omic approaches to investigate the human gut microbiome more thoroughly in hopes to fully understand the role of this species in the development of and protection against diseases, as well as its potential uses in medicine and research. Generally, P. vulgatus is considered as a beneficial bacteria that contributes to digestion and a balanced microbiome, but it has been known to cause opportunistic infections and induce or worsen inflammatory responses. Due to its abundance in the microbiome, some researchers are investigating these species in hopes that it will be a suitable model organism for gut microbiome research, like Bacteroides thetaiotaomicron.

References

  1. "Species: Bacteroides caccae". LPSN.DSMZ.de.
  2. "Bacteroides caccae". www.ncbi.nlm.nih.gov. National Center for Biotechnology Information, U.S. National Library of Medicine . Retrieved 2020-01-08.
  3. Aldridge, Kenneth E. (1993-08-01). "Antimicrobial susceptibility of relatively infrequent isolates of the Bacteroides fragilis group: Bacteroides uniformis, bacteroides caccae, and Bacteroides eggerthii". Current Therapeutic Research. 54 (2): 208–213. doi:10.1016/S0011-393X(05)80603-4.
  4. "Bacteroides caccae Johnson et al. ATCC 43185". www.atcc.org.
  5. 1 2 Johnson, John L.; Moore, W. E. C.; Moore, Lillian V. H. (1986). "Bacteroides caccae sp. nov., Bacteroides merdae sp. nov., and Bacteroides stercoris sp. nov. Isolated from Human Feces" (PDF). International Journal of Systematic and Evolutionary Microbiology. 36 (4): 499–501. doi: 10.1099/00207713-36-4-499 . ISSN   1466-5026.
  6. 1 2 3 Wei, Bo; Dalwadi, Harnisha; Gordon, Lynn K.; Landers, Carol; Bruckner, David; Targan, Stephan R.; Braun, Jonathan (October 2001). "Molecular Cloning of a Bacteroides caccae TonB-Linked Outer Membrane Protein Identified by an Inflammatory Bowel Disease Marker Antibody". Infection and Immunity. 69 (10): 6044–6054. doi:10.1128/IAI.69.10.6044-6054.2001. ISSN   0019-9567. PMC   98733 . PMID   11553542.
  7. Wexler, Hannah M. (October 2007). "Bacteroides: the Good, the Bad, and the Nitty-Gritty". Clinical Microbiology Reviews. 20 (4): 593–621. doi:10.1128/CMR.00008-07. ISSN   0893-8512. PMC   2176045 . PMID   17934076.
  8. Magnúsdóttir, Stefanía; Heinken, Almut; Kutt, Laura; Ravcheev, Dmitry A.; Bauer, Eugen; Noronha, Alberto; Greenhalgh, Kacy; Jäger, Christian; Baginska, Joanna; Wilmes, Paul; Fleming, Ronan M. T.; Thiele, Ines (January 2017). "Generation of genome-scale metabolic reconstructions for 773 members of the human gut microbiota". Nature Biotechnology. 35 (1): 81–89. doi: 10.1038/nbt.3703 . ISSN   1546-1696. PMID   27893703.
  9. Sirotek, K.; Slováková, L.; Kopečný, J.; Marounek, M. (2004). "Fermentation of pectin and glucose, and activity of pectin-degrading enzymes in the rabbit caecal bacterium Bacteroides caccae". Letters in Applied Microbiology. 38 (4): 327–332. doi:10.1111/j.1472-765X.2004.01492.x. ISSN   1472-765X. PMID   15214734. S2CID   28975313.
  10. 1 2 McNulty, Nathan P.; Wu, Meng; Erickson, Alison R.; Pan, Chongle; Erickson, Brian K.; Martens, Eric C.; Pudlo, Nicholas A.; Muegge, Brian D.; Henrissat, Bernard; Hettich, Robert L.; Gordon, Jeffrey I. (20 August 2013). "Effects of Diet on Resource Utilization by a Model Human Gut Microbiota Containing Bacteroides cellulosilyticus WH2, a Symbiont with an Extensive Glycobiome". PLOS Biology. 11 (8): e1001637. doi: 10.1371/journal.pbio.1001637 . ISSN   1545-7885. PMC   3747994 . PMID   23976882.