Balaban 10-cage

Last updated
Balaban 10-cage
Balaban 10-cage.svg
The Balaban 10-cage
Named afterAlexandru T. Balaban
Vertices 70
Edges 105
Radius 6
Diameter 6
Girth 10
Automorphisms 80
Chromatic number 2
Chromatic index 3
Book thickness 3
Queue number 2
Properties Cubic
Cage
Hamiltonian
Table of graphs and parameters

In the mathematical field of graph theory, the Balaban 10-cage or Balaban (3,10)-cage is a 3-regular graph with 70 vertices and 105 edges named after Alexandru T. Balaban. [1] Published in 1972, [2] It was the first 10-cage discovered but it is not unique. [3]

Contents

The complete list of 10-cages and the proof of minimality was given by Mary R. O'Keefe and Pak Ken Wong. [4] There exist 3 distinct (3,10)-cages, the other two being the Harries graph and the Harries–Wong graph. [5] Moreover, the Harries–Wong graph and Harries graph are cospectral graphs.

The Balaban 10-cage has chromatic number 2, chromatic index 3, diameter 6, girth 10 and is hamiltonian. It is also a 3-vertex-connected graph and 3-edge-connected. The book thickness is 3 and the queue number is 2. [6]

The characteristic polynomial of the Balaban 10-cage is

See also

Molecular graph
Balaban 11-cage

Related Research Articles

In graph theory, the girth of an undirected graph is the length of a shortest cycle contained in the graph. If the graph does not contain any cycles, its girth is defined to be infinity. For example, a 4-cycle (square) has girth 4. A grid has girth 4 as well, and a triangular mesh has girth 3. A graph with girth four or more is triangle-free.

Petersen graph Cubic graph with 10 vertices and 15 edges

In the mathematical field of graph theory, the Petersen graph is an undirected graph with 10 vertices and 15 edges. It is a small graph that serves as a useful example and counterexample for many problems in graph theory. The Petersen graph is named after Julius Petersen, who in 1898 constructed it to be the smallest bridgeless cubic graph with no three-edge-coloring.

Tutte polynomial Algebraic encoding of graph connectivity

The Tutte polynomial, also called the dichromate or the Tutte–Whitney polynomial, is a graph polynomial. It is a polynomial in two variables which plays an important role in graph theory. It is defined for every undirected graph and contains information about how the graph is connected. It is denoted by .

Hoffman–Singleton graph 7-regular undirected graph with 50 nodes and 175 edges

In the mathematical field of graph theory, the Hoffman–Singleton graph is a 7-regular undirected graph with 50 vertices and 175 edges. It is the unique strongly regular graph with parameters (50,7,0,1). It was constructed by Alan Hoffman and Robert Singleton while trying to classify all Moore graphs, and is the highest-order Moore graph known to exist. Since it is a Moore graph where each vertex has degree 7, and the girth is 5, it is a (7,5)-cage.

Cage (graph theory) Regular graph with fewest possible nodes for its girth

In the mathematical area of graph theory, a cage is a regular graph that has as few vertices as possible for its girth.

Odd graph

In the mathematical field of graph theory, the odd graphsOn are a family of symmetric graphs with high odd girth, defined from certain set systems. They include and generalize the Petersen graph.

Chvátal graph

In the mathematical field of graph theory, the Chvátal graph is an undirected graph with 12 vertices and 24 edges, discovered by Václav Chvátal (1970).

Harries graph Regular graph with 70 nodes and 105 edges

In the mathematical field of graph theory, the Harries graph or Harries (3-10)-cage is a 3-regular, undirected graph with 70 vertices and 105 edges.

Harries–Wong graph

In the mathematical field of graph theory, the Harries–Wong graph is a 3-regular undirected graph with 70 vertices and 105 edges.

McGee graph

In the mathematical field of graph theory, the McGee graph or the (3-7)-cage is a 3-regular graph with 24 vertices and 36 edges.

Generalized Petersen graph Family of cubic graphs formed from regular and star polygons

In graph theory, the generalized Petersen graphs are a family of cubic graphs formed by connecting the vertices of a regular polygon to the corresponding vertices of a star polygon. They include the Petersen graph and generalize one of the ways of constructing the Petersen graph. The generalized Petersen graph family was introduced in 1950 by H. S. M. Coxeter and was given its name in 1969 by Mark Watkins.

Folkman graph

In the mathematical field of graph theory, the Folkman graph, named after Jon Folkman, is a bipartite 4-regular graph with 20 vertices and 40 edges.

Balaban 11-cage

In the mathematical field of graph theory, the Balaban 11-cage or Balaban (3,11)-cage is a 3-regular graph with 112 vertices and 168 edges named after Alexandru T. Balaban.

Robertson graph

In the mathematical field of graph theory, the Robertson graph or (4,5)-cage, is a 4-regular undirected graph with 19 vertices and 38 edges named after Neil Robertson.

Horton graph

In the mathematical field of graph theory, the Horton graph or Horton 96-graph is a 3-regular graph with 96 vertices and 144 edges discovered by Joseph Horton. Published by Bondy and Murty in 1976, it provides a counterexample to the Tutte conjecture that every cubic 3-connected bipartite graph is Hamiltonian.

Brinkmann graph

In the mathematical field of graph theory, the Brinkmann graph is a 4-regular graph with 21 vertices and 42 edges discovered by Gunnar Brinkmann in 1992. It was first published by Brinkmann and Meringer in 1997.

Tutte 12-cage

In the mathematical field of graph theory, the Tutte 12-cage or Benson graph is a 3-regular graph with 126 vertices and 189 edges named after W. T. Tutte.

110-vertex Iofinova-Ivanov graph

The 110-vertex Iofinova-Ivanov graph is, in graph theory, a semi-symmetric cubic graph with 110 vertices and 165 edges.

Robertson–Wegner graph

In the mathematical field of graph theory, the Robertson–Wegner graph is a 5-regular undirected graph with 30 vertices and 75 edges named after Neil Robertson and G. Wegner.

Wong graph

In the mathematical field of graph theory, the Wong graph is a 5-regular undirected graph with 30 vertices and 75 edges. It is one of the four (5,5)-cage graphs, the others being the Foster cage, the Meringer graph, and the Robertson–Wegner graph.

References

  1. Weisstein, Eric W. "Balaban 10-Cage". MathWorld .
  2. Alexandru T. Balaban, A trivalent graph of girth ten, Journal of Combinatorial Theory Series B 12 (1972), 1–5.
  3. Pisanski, T.; Boben, M.; Marušič, D.; and Orbanić, A. "The Generalized Balaban Configurations." Preprint. 2001. .
  4. Mary R. O'Keefe and Pak Ken Wong, A smallest graph of girth 10 and valency 3, Journal of Combinatorial Theory Series B 29 (1980), 91–105.
  5. Bondy, J. A. and Murty, U. S. R. Graph Theory with Applications. New York: North Holland, p. 237, 1976.
  6. Jessica Wolz, EngineeringLinear Layouts with SAT. Master Thesis, Universität Tübingen, 2018