Barcode technology in healthcare

Last updated

Barcode technology in healthcare is the use of optical machine-readable representation of data in a hospital or healthcare setting.

Contents

Dating back to the 1970s, there has been a continual effort among healthcare settings to adopt barcode technology. [1] In the early 2000s, published reports began to illustrate high rates of medical error (adverse events) and the increasing costs of healthcare. As a result, the desire for barcoding technology in healthcare has grown as a realistic and applicable solution. Ranked first in 2007, and second in 2008 in the Annual Healthcare Information and Management Systems Society (HIMSS) Leadership Survey, HIMSS placed high priority on the use of barcoding technology to reduce medical errors and promote patient safety. [2] [3]

Applications

Barcoding in healthcare have a variety of applications, including the following:

Drug Identification & Medication Management

In February 2004, the U.S. Food and Drug Administration (FDA) had ruled that barcodes must be used on certain human drugs. [4] [5] Barcodes must be linear in nature and must be readable by barcode scanners. Medication barcodes must have specified information for drug identification. Barcode information on these items must include the National Drug Code (NDC) number of the drug, an 11-character identification number for the medication. The NDC contains the name of the medication, dosage and drug company that produces the medication. Additional information that may be included in medication barcodes may include the expiration date and lot number of the medication. [6] This is to ensure that counterfeit or expired drugs are not being administered to patients.

Medication management is a difficult task, where it focuses on the "five rights": right patient, right medication, right dose, right time, and right route of administration. [7] Barcode medication verification at bedside allows for nurses to automatically document the administration of drugs by means of barcode scanning. A study conducted in 2010, found that barcode usage prevented about 90 000 serious medical errors each year and reduced mortality rate by 20%. [8] One case study noted that the use of barcodes reduced medication administration error by 82% across five units studied from pre-implementation to post-implementation. [7] Other benefits that were realized included improved nursing staff satisfaction, improved patient satisfaction, and improved community relations.

Specimen Collection and Blood Infusion Safety

Healthcare professionals use specimen testing (blood, urine, or other) to help diagnose disease, assess health, and monitor medication level. Accurate results can be yielded from error-free collection procedures. Specimens that are collected incorrectly may lead to erroneous test results, which may lead to serious consequences for patients. This may include delayed or inappropriate treatments and incorrect medication adjustments. More than 160 000 adverse medical events per year have been suspected in the United States because of misidentification of patient or laboratory specimen. [9] Barcodes have been noted to be the strong intervention to reduce labeling errors on specimen collection, by ensuring that the correct patient is receiving the correct analysis. [10] [11] Barcode technologies for specimen collection have been noted to increase patient comfort, decrease possible delays in diagnosis or treatment, and decrease rework for nurse and laboratory staff. [12] Within medical laboratories, incorporating barcoding systems has shown to be effective in reducing ID errors. [13]

Barcoding blood and other products may allow for reduction of medical error and increase patient safety. It is important to ensure accurate identification with blood products because ID errors put patients at risk for blood incompatibility. [14] Blood and blood components manufactured on or after April 26, 2006, must have barcode labels according to the FDA. [4] [15] This is used to minimize the risk of patients receiving the wrong treatment in healthcare facilities. According to the FDA, a minimum of four information pieces are required for the label, which includes the following: [16]

Surgical Instrument Identification & Sterilization

Barcodes may be used to identify the instruments and supplies in kits for surgical procedures. Barcodes on instruments and surgical kits may be used to ensure compliance with surgeons' preferences for what their kits contains. Using barcodes to track what is and what is not used on a regular basis may allow for hospitals to optimize kit contents for each surgeon. This provides opportunities to reduce costs since surgeons' preferences may change over time. [17] With the lack of updates to kit and cart contents, it may result in the purchase of supplies that are never used. [17] Barcodes on surgical instruments can also be used to uniquely identify each instrument that is sterilized individually. [18]

Patient Identification

Barcode technology can help prevent medical errors by making accurate and reliable information readily available at the point-of-care. Information, such as the drug identification, medication management, infusion safety, specimen collection, etc. and any other patient care activity can be easily tracked during the patient stay. Electronic barcoding ensures correct patient identification throughout the testing process, including test ordering and reporting, specimen collection, and analysis. [14] Wristbands with barcodes that contain the information of the patient's medical record or visit number, and any other identifiers have been proven effective to provide proper patient care. [19] In addition to wristbands, barcode scanners and printers are used to confirm patient identification. [14]

Barcoding Concerns

Economists appreciate the implementation of mature technology as barcodes. However, there are concerns with the use improper of barcoding technology in healthcare.

Looking at barcoding technology in healthcare from a clinical professional standpoint

The stated concerns of 2003, as e.g.[ citation needed ]

All concerns may be traced to inadequate methods or insufficient tools with a non covered demand for support by modern information technologies. Actualized decision making in 2016 for equipping the mobile work serves to overcome limitations originated from legacy equipment.

Future of Barcoding in Healthcare

Given barcoding's history as a mature reliable technology, barcoding will continue to be adopted within the healthcare setting to improve the quality of patient care. However, growing attention on radio-frequency identification (RFID) systems are expected to be the future competitor for barcoding. Nevertheless, barcoding will continue to play a prominent role with RFID and will likely collaborate with RFID to form a hybrid system. [24] In this regard, barcoding (1-D and 2-D) will continue to have advantages over RFID (specifically passive RFID) for the following two reasons: [25]

Barcoding technology in healthcare will eventually begin to shift over to the use of 2-D symbologies to accommodate size restrictions and the growing need for large amounts of data. This is already becoming a reality with the use of mobile phones and is bound to play an important role in the development of mHealth.

See also

Compliant Barcode Standards used in Healthcare

Health Industry Bar Code Compliance

Basically the HIN® respectively the HIBC are coded compliant with various international joint ISO/IEC formatting standards. Especially the code structures comply with the standards defined in ISO/IEC 15418:2016 and

  • the Barcode complies with the structures defined in ISO/IEC 15420:2009,
  • the Codablock code complies with the structures defined in ISO/IEC 15424,
  • the DataMatrix code complies with the structures defined in ISO/IEC 16022:2006,
  • (the electronic UHF RFID code complies with the structures defined in ISO/IEC 18000-6:2013).

The first letter in the HIN® codes according to ISO/IEC 15418:2016 is a reserved + sign. The coding according to standard ISO/IEC 15418:2016 is subject to license fees. [26]

Related Research Articles

<span class="mw-page-title-main">Barcode</span> Optical machine-readable representation of data

A barcode or bar code is a method of representing data in a visual, machine-readable form. Initially, barcodes represented data by varying the widths, spacings and sizes of parallel lines. These barcodes, now commonly referred to as linear or one-dimensional (1D), can be scanned by special optical scanners, called barcode readers, of which there are several types. Later, two-dimensional (2D) variants were developed, using rectangles, dots, hexagons and other patterns, called matrix codes or 2D barcodes, although they do not use bars as such. 2D barcodes can be read using purpose-built 2D optical scanners, which exist in a few different forms. 2D barcodes can also be read by a digital camera connected to a microcomputer running software that takes a photographic image of the barcode and analyzes the image to deconstruct and decode the 2D barcode. A mobile device with a built-in camera, such as smartphone, can function as the latter type of 2D barcode reader using specialized application software.

Radio-frequency identification (RFID) uses electromagnetic fields to automatically identify and track tags attached to objects. An RFID system consists of a tiny radio transponder, a radio receiver and transmitter. When triggered by an electromagnetic interrogation pulse from a nearby RFID reader device, the tag transmits digital data, usually an identifying inventory number, back to the reader. This number can be used to track inventory goods.

<span class="mw-page-title-main">PDF417</span> Type of barcode

PDF417 is a stacked linear barcode format used in a variety of applications such as transport, identification cards, and inventory management. "PDF" stands for Portable Data File. The "417" signifies that each pattern in the code consists of 4 bars and spaces in a pattern that is 17 units (modules) long. The PDF417 symbology was invented by Dr. Ynjiun P. Wang at Symbol Technologies in 1991. It is defined in ISO 15438.

<span class="mw-page-title-main">Pharmacogenomics</span> Study of the role of the genome in drug response

Pharmacogenomics is the study of the role of the genome in drug response. Its name reflects its combining of pharmacology and genomics. Pharmacogenomics analyzes how the genetic makeup of a patient affects their response to drugs. It deals with the influence of acquired and inherited genetic variation on drug response, by correlating DNA mutations with pharmacokinetic, pharmacodynamic, and/or immunogenic endpoints.

<span class="mw-page-title-main">GS1</span> Organization for barcode standards

GS1 is a not-for-profit, international organization developing and maintaining its own standards for barcodes and the corresponding issue company prefixes. The best known of these standards is the barcode, a symbol printed on products that can be scanned electronically.

Patient safety is a discipline that emphasizes safety in health care through the prevention, reduction, reporting and analysis of error and other types of unnecessary harm that often lead to adverse patient events. The frequency and magnitude of avoidable adverse events, often known as patient safety incidents, experienced by patients was not well known until the 1990s, when multiple countries reported significant numbers of patients harmed and killed by medical errors. Recognizing that healthcare errors impact 1 in every 10 patients around the world, the World Health Organization (WHO) calls patient safety an endemic concern. Indeed, patient safety has emerged as a distinct healthcare discipline supported by an immature yet developing scientific framework. There is a significant transdisciplinary body of theoretical and research literature that informs the science of patient safety with mobile health apps being a growing area of research.

A Patient Safety Organization (PSO) is a group, institution, or association that improves medical care by reducing medical errors. Common functions of patient safety organizations are data collection, analysis, reporting, education, funding, and advocacy. A PSO differs from a Federally designed Patient Safety Organization (PSO), which provides health care providers in the U.S. privilege and confidentiality protections for efforts to improve patient safety and the quality of patient care delivery

In medicine, an indication is a valid reason to use a certain test, medication, procedure, or surgery. There can be multiple indications to use a procedure or medication. An indication can commonly be confused with the term diagnosis. A diagnosis is the assessment that a particular [medical] condition is present while an indication is a reason for use. The opposite of an indication is a contraindication, a reason to withhold a certain medical treatment because the risks of treatment clearly outweigh the benefits.

The ISO/TC 215 is the International Organization for Standardization's (ISO) Technical Committee (TC) on health informatics. TC 215 works on the standardization of Health Information and Communications Technology (ICT), to allow for compatibility and interoperability between independent systems.

<span class="mw-page-title-main">Medical laboratory</span> Principles of management with special reference to medical science

A medical laboratory or clinical laboratory is a laboratory where tests are conducted out on clinical specimens to obtain information about the health of a patient to aid in diagnosis, treatment, and prevention of disease. Clinical medical laboratories are an example of applied science, as opposed to research laboratories that focus on basic science, such as found in some academic institutions.

Health information technology (HIT) is health technology, particularly information technology, applied to health and health care. It supports health information management across computerized systems and the secure exchange of health information between consumers, providers, payers, and quality monitors. Based on a 2008 report on a small series of studies conducted at four sites that provide ambulatory care – three U.S. medical centers and one in the Netherlands, the use of electronic health records (EHRs) was viewed as the most promising tool for improving the overall quality, safety and efficiency of the health delivery system.

<span class="mw-page-title-main">VistA</span> Health information system

The Veterans Health Information Systems Technology and Architecture (VISTA) is the system of record for the clinical, administrative and financial operations of the Veterans Health Administration VISTA consists of over 180 clinical, financial, and administrative applications integrated within a single shared lifelong database (figure 1).

<span class="mw-page-title-main">Bar code medication administration</span>

Bar code medication administration (BCMA) is a bar code system designed by Glenna Sue Kinnick to prevent medication errors in healthcare settings and to improve the quality and safety of medication administration. The overall goals of BCMA are to improve accuracy, prevent errors, and generate online records of medication administration.

Real-time locating systems (RTLS), also known as real-time tracking systems, are used to automatically identify and track the location of objects or people in real time, usually within a building or other contained area. Wireless RTLS tags are attached to objects or worn by people, and in most RTLS, fixed reference points receive wireless signals from tags to determine their location. Examples of real-time locating systems include tracking automobiles through an assembly line, locating pallets of merchandise in a warehouse, or finding medical equipment in a hospital.

Precision Dynamics Corporation (PDC) is an American international identification device manufacturer headquartered in Santa Clarita, California with offices abroad in Belgium, France, and the United Kingdom. The company makes identification devices for healthcare, jailing, and entertainment purposes, including wristband and RFID devices.

The Health Industry Business Communications Council (HIBCC) is a primary standard-setting and educational organization for healthcare bar coding in the United States. It provides publications, trade shows, educational resources, conferences and training programs.

Medical device connectivity is the establishment and maintenance of a connection through which data is transferred between a medical device, such as a patient monitor, and an information system. The term is used interchangeably with biomedical device connectivity or biomedical device integration. By eliminating the need for manual data entry, potential benefits include faster and more frequent data updates, diminished human error, and improved workflow efficiency.

<span class="mw-page-title-main">Idelalisib</span> Chemical compound

Idelalisib, sold under the brand name Zydelig, is a medication used to treat certain blood cancers.

ISO/IEC 20248Automatic Identification and Data Capture Techniques – Data Structures – Digital Signature Meta Structure is an international standard specification under development by ISO/IEC JTC 1/SC 31/WG 2. This development is an extension of SANS 1368, which is the current published specification. ISO/IEC 20248 and SANS 1368 are equivalent standard specifications. SANS 1368 is a South African national standard developed by the South African Bureau of Standards.

<span class="mw-page-title-main">Drug labelling</span>

Drug labelling is also referred to as prescription labelling, is a written, printed or graphic matter upon any drugs or any of its container, or accompanying such a drug. Drug labels seek to identify drug contents and to state specific instructions or warnings for administration, storage and disposal. Since 1800s, legislation has been advocated to stipulate the formats of drug labelling due to the demand for an equitable trading platform, the need of identification of toxins and the awareness of public health. Variations in healthcare system, drug incidents and commercial utilization may attribute to different regional or national drug label requirements. Despite the advancement in drug labelling, medication errors are partly associated with undesirable drug label formatting.

References

  1. 1 2 Healthcare Information and Management Systems Society (HIMSS). (2003). "Implementation guide of the use of bar code technology in healthcare" Retrieved from https://www.mckesson.com/medical-supplies/handheld-scanner/.
  2. Healthcare Information and Management Systems Society (HIMMS). (2007). "18th Annual HIMSS Leadership Survey." Retrieved from http://www.himss.org/2007survey/DOCS/18thAnnualLeadershipSurvey.pdf Archived October 17, 2011, at the Wayback Machine
  3. Healthcare Information and Management Systems Society (HIMMS). (2008). "19th Annual HIMSS Leadership Survey." Retrieved from http://www.himss.org/2008survey/DOCS/19thAnnualLeadershipSurveyFINAL.pdf Archived June 7, 2012, at the Wayback Machine
  4. 1 2 U.S. Food and Drug Administration (FDA). (2011). "Bar Code Label Requirements for Blood and Blood Components Questions and Answers." Retrieved from https://www.fda.gov/BiologicsBloodVaccines/DevelopmentApprovalProcess/AdvertisingLabelingPromotionalMaterials/BarCodeLabelRequirements/ucm133136.htm
  5. Food and Drug Administration (FDA). (2004). "C.F.R. 201.25.21" Retrieved from http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=201.25
  6. U.S. Food and Drug Administration (FDA). (2011). "National Drug Code Directory." Retrieved from https://www.fda.gov/Drugs/InformationOnDrugs/ucm142438.htm
  7. 1 2 Work, M. (2005). "Improving medication safety with a wireless, mobile barcode system in a community hospital." Patient Safety and Quality Care.
  8. Poon, E.G., et al. (2010). "Effect of bar-code technology on the safety of medication administration." New England Journal of Medicine, 362, 1698-707.
  9. Valenstein, P.N., Raab, S.S., & Walsh, M.K. (2006). "Identification Errors Involving Clinical Laboratories: A College of American Pathologists Q-Probes Study of Patient and Specimen Identification Errors at 120 Institutions." [Electronic Version]. Archives of Pathology & Laboratory Medicine, 130(8), 1106-1113.
  10. Astion, M. (2006). "Right patient, wrong sample." Agency for Healthcare Research and Quality Case and Commentary. Retrieved from http://www.webmm.ahrq.gov/case.aspx?caseID=142 Archived 2011-10-16 at the Wayback Machine
  11. Kellicker, P. (2008). "Barcode technology for specimen collection." Retrieved from http://www.uscnorriscancerhospital.org/condition/document/45392 Archived May 26, 2012, at the Wayback Machine
  12. Brown, J.E., Smith, N., & Sherfy, B.R. (2011). "Decreasing mislabeled laboratory specimens using barcode technology and bedside printers." [Electronic version]. Journal of Nursing Care Quality, 26(1), 13-21.
  13. Wagar, Elizabeth A.; Tamashiro, Lorraine; Yasin, Bushra; Hilborne, Lee; Bruckner, David A. (2006-11-01). "Patient Safety in the Clinical Laboratory: A Longitudinal Analysis of Specimen Identification Errors". Archives of Pathology & Laboratory Medicine. 130 (11): 1662–1668. doi:10.5858/2006-130-1662-PSITCL. ISSN   1543-2165. PMID   17076528.
  14. 1 2 3 Snyder, Susan R.; Favoretto, Alessandra M.; Derzon, James H.; Christenson, Robert H.; Kahn, Stephen E.; Shaw, Colleen S.; Baetz, Rich Ann; Mass, Diana; Fantz, Corinne R.; Raab, Stephen S.; Tanasijevic, Milenko J. (September 2012). "Effectiveness of barcoding for reducing patient specimen and laboratory testing identification errors: A Laboratory Medicine Best Practices systematic review and meta-analysis". Clinical Biochemistry. 45 (13–14): 988–998. doi:10.1016/j.clinbiochem.2012.06.019. PMC   4518452 . PMID   22750145.
  15. U.S. Food and Drug Administration (FDA). (2006). "Bar Code Requirements for Blood Banks." Retrieved from https://www.fda.gov/BiologicsBloodVaccines/NewsEvents/WorkshopsMeetingsConferences/ucm113326.htm
  16. Nutrition, Center for Food Safety and Applied (2023-03-17). "Guidance for Industry: Guide for Developing and Using Data Bases for Nutrition Labeling". www.fda.gov. Retrieved 2023-09-11.
  17. 1 2 Nicolaos, G., Tournoud, M., Hassani, Y., Mignon, J., Frémont, F., & Fabrequette, A. (2009). "Unique device identification of surgical instruments by DataMatrix 2D barcodes." [Case Study]. GSI Healthcare Reference Book, 1-3.
  18. Flynn, S. (2007). Documenting the steam sterilization process. Healthcare Purchasing News, 31(1), 50.
  19. Niceware International. (2006). "Patient safety with bar code and RFID labeling identification." [White Paper] Retrieved from http://cdn.ftp.nicelabel.com/docs/whitepaper/wp-healthcare-patientsafetywithidsolutions-102406-3.pdf
  20. HIMSS10 NewsWire (2010). “eMix Presents Cloud Technology for Image Sharing,” Healthcare IT News, 23 February 2010. Retrieved on 12 July 2010.
  21. Poon, E.G., et al. (2008). "Impact of barcode medication administration technology on how nurses spend their time providing patient care." [Electronic Version]. Journal of Nursing Administration, 38(12), 541-549.
  22. Cummings, J., Ratko, T., & Matuszewski, K. (2005). "Barcoding to enhance patient safety." Agency for Healthcare Research and Quality Case and Commentary. Retrieved from http://www.psqh.com/sepoct05/barcodingrfid1.html
  23. Heinen, M.G., Coyle, G.A., & Hamilton, A.V. (2003). "Barcoding makes its mark on daily practice." [Electronic Version]. Journal of Nursing Administration, 33, 18-20.
  24. Health Industry Business Communications Council (HIBCC). "Radio frequency identification (RFID) in healthcare." [White Paper]. Retrieved from http://www.hibcc.org/PUBS/WhitePapers/RFID%20in%20Healthcare.pdf Archived April 23, 2012, at the Wayback Machine
  25. Dzik, S. (2007). "Radio frequency identification for prevention of bedside errors." [Electronic Version]. Transfusion. 47(s2), 125S-129S.
  26. Licensing under the HIN system

Barcode Standards used in Healthcare