Voreen

Last updated
Voreen
Stable release
5.3.0 / August 2, 2024;16 months ago (2024-08-02)
Repository https://github.com/voreen-project/voreen
Written in C++ (Qt), OpenGL, GLSL, OpenCL. Python
Operating system Cross-platform
Type Volume rendering, Interactive visualization
License GNU General Public License Version 2
Website voreen.uni-muenster.de

Voreen (volume rendering engine) is an open-source volume visualization library and development platform. Through the use of GPU-based volume rendering techniques it allows high frame rates on standard graphics hardware to support interactive volume exploration.

Contents

History

Voreen was initiated at the Department of Computer Science at the University of Münster, Germany in 2004 and was first released on 11 April 2008 under the GNU general public license (GPL). Voreen is written in C++ utilizing the Qt framework and using the OpenGL rendering acceleration API, and is able to achieve high interactive frame rates on consumer graphics hardware. [1] It is platform independent and compiles on Windows and Linux. The source code and documentation, and also pre-compiled binaries for Windows and Linux, are available from its website. Since October 2024, Voreen is developed in an open repository on GitHub. Although it is intended and mostly used for medical applications, [2] any other kind of volume data can be handled, e.g., microscopy, flow data or other simulations. [3] [4]

Concepts

The visualization environment VoreenVE based on that engine is designed for authoring and performing interactive visualizations of volumetric data. Different visualizations can be assembled in form of so-called networks via rapid prototyping, with each network consisting of several processors. [5] Processors perform more or less specialized tasks for the entire rendering process, ranging from supplying data over raycasting, geometry creation and rendering to image processing. Within the limits of their respective purposes, the processors can be combined freely with each other, and thereby granting a great amount of flexibility and providing a uniform way of handling volume rendering. Authors who need to implement a certain rendering technique can confine their work basically on the development of new processors, whereas users who only want to access a certain visualization simply need to employ the appropriate processors or networks and do not need to care about technical details.

Features

Visualization

Volume Processing

Interaction

Data I/O

See also

References

  1. Smelyanskiy, M.; Holmes, D.; Chhugani, J.; Larson, A.; Carmean, D. M.; Hanson, D.; Dubey, P.; Augustine, K.; Kim, D.; Kyker, A.; Lee, V. W.; Nguyen, A. D.; Seiler, L.; Robb, R. (2009). "Mapping High-Fidelity Volume Rendering for Medical Imaging to CPU, GPU and Many-Core Architectures" (PDF). IEEE Transactions on Visualization and Computer Graphics. 15 (6): 1563–1570. CiteSeerX   10.1.1.460.3466 . doi:10.1109/TVCG.2009.164. ISSN   1077-2626. PMID   19834234. S2CID   1284490.
  2. Eisenmann, U.; Freudling, A.; Metzner, R.; Hartmann, M.; Wirtz, C. R.; Dickhaus, H. (2009). "Volume Rendering for Planning and Performing Neurosurgical Interventions". World Congress on Medical Physics and Biomedical Engineering, September 7 - 12, 2009, Munich, Germany. World Congress on Medical Physics and Biomedical Engineering, September 7–12, 2009. Vol. 25/6. Munich, Germany. pp. 201–204. doi:10.1007/978-3-642-03906-5_55. ISBN   978-3-642-03905-8. ISSN   1680-0737.{{cite book}}: CS1 maint: location missing publisher (link)
  3. "Flight through Rayleigh-Benard field". YouTube . Archived from the original on 2021-12-15.
  4. Scherzinger, A.; Brix, T.; Drees, D.; Völker, A.; Radkov, K.; Santalidis, N.; Fieguth, A.; Hinrichs, K. (2017). "Interactive Exploration of Cosmological Dark-Matter Simulation Data". IEEE Computer Graphics and Applications. 37 (2): 80–89. doi:10.1109/MCG.2017.20. PMID   28320645. S2CID   15305374.
  5. Meyer-Spradow, J.; Ropinski, T.; Mensmann, J. R.; Hinrichs, K. (2009). "Voreen: A Rapid-Prototyping Environment for Ray-Casting-Based Volume Visualizations". IEEE Computer Graphics and Applications. 29 (6): 6–13. doi:10.1109/MCG.2009.130. ISSN   0272-1716. PMID   24806774. S2CID   8211514.