Biopac student lab

Last updated
Student using a Biopac at Monterrey Institute of Technology and Higher Education, Mexico City. CCMDonation14.JPG
Student using a Biopac at Monterrey Institute of Technology and Higher Education, Mexico City.

The Biopac Student Lab is a proprietary teaching device and method introduced in 1995 as a digital replacement for aging chart recorders and oscilloscopes that were widely used in undergraduate teaching laboratories prior to that time. It is manufactured by BIOPAC Systems, Inc., of Goleta, California. [1] The advent of low cost personal computers meant that older analog technologies could be replaced with powerful and less expensive computerized alternatives. [2]

Contents

Students in undergraduate teaching labs use the BSL system to record data from their own bodies, animals or tissue preparations. The BSL system integrates hardware, software and curriculum materials including over sixty experiments that students use to study the cardiovascular system, muscles, pulmonary function, autonomic nervous system, and the brain.

History of physiology and electricity

One of the more complicated concepts for students to grasp is the fact that electricity is flowing throughout a living body at all times and that it is possible to use the signals to measure the performance and health of individual parts of the body. The Biopac Student Lab System helps to explain the concept and allows students to understand physiology. [3]

Physiology and electricity share a common history, with some of the pioneering work in each field being done in the late 18th century by Count Alessandro Giuseppe Antonio Anastasio Volta and Luigi Galvani. Count Volta invented the battery and had a unit of electrical measurement named in his honor (the Volt). These early researchers studied "animal electricity" and were among the first to realize that applying an electrical signal to an isolated animal muscle caused it to twitch. The Biopac Student Lab uses procedures similar to Count Volta’s to demonstrate how muscles can be electrically stimulated.

Concept

The BSL system includes data acquisition hardware with built-in universal amplifiers to record and condition electrical signals from the heart, muscle, nerve, brain, eye, respiratory system, and tissue preparations. [4] The data acquisition system receives the signals from electrodes and transducers. The electrical signals are extremely small—with amplitudes sometimes in the microVolt (1/1,000,000 of a volt) range—so the hardware amplifies these signals, filters out unwanted electrical noise or interfering signals, and converts them to a set of numbers that the computer can read. Biopac Student Lab software then displays the numbers as waveforms on the monitor.

The data acquisition system connects to a PC running Windows or Macintosh operating systems, via USB. The electrodes and transducers employ sensors that allow the software to communicate with the students to ensure that they are using the correct devices and collecting good data. Software guides students by using onscreen instructions and a detailed lab manual follows the scientific method. Once students have collected data, they use analysis tools to measure the amplitude and frequency, plus a wide range of other values from the electrical signals. [5] The analysis process allows students to make general comparisons with the data. They can compare their results to published normal values, or the values before and after a subject performed a specified task. They can also compare results with other students in the lab. The software is available in English, French, Spanish, Italian, Japanese and Chinese.

The Biopac Student Lab System is widely used by undergraduate labs to teach physiology, pharmacology, biology, neuroscience, psychology, psychophysiology, exercise physiology, and biomedical engineering. Publishers have adopted the curriculum materials and included them in commercially available lab manuals.

Lab manuals that include the Biopac Student Lab


Related Research Articles

Psychophysiology is the branch of psychology that is concerned with the physiological bases of psychological processes. While psychophysiology was a general broad field of research in the 1960s and 1970s, it has now become quite specialized, based on methods, topic of studies and scientific traditions. Methods vary as combinations of electrophysiological methods, neuroimaging, and neurochemistry. Topics have branched into subspecializations such as social, sport, cognitive, cardiovascular, clinical and other branches of psychophysiology.

<span class="mw-page-title-main">Data acquisition</span> Process of sampling signals from sensors and converting into digital data

Data acquisition is the process of sampling signals that measure real-world physical conditions and converting the resulting samples into digital numeric values that can be manipulated by a computer. Data acquisition systems, abbreviated by the acronyms DAS,DAQ, or DAU, typically convert analog waveforms into digital values for processing. The components of data acquisition systems include:

Joseph Frank Ossanna, Jr. was an American electrical engineer and computer programmer who worked as a member of the technical staff at the Bell Telephone Laboratories in Murray Hill, New Jersey. He became actively engaged in the software design of Multics, a general-purpose operating system used at Bell.

A transducer is a device that converts energy from one form to another. Usually a transducer converts a signal in one form of energy to a signal in another. Transducers are often employed at the boundaries of automation, measurement, and control systems, where electrical signals are converted to and from other physical quantities. The process of converting one form of energy to another is known as transduction.

<span class="mw-page-title-main">Biofeedback</span> Gaining awareness of biological processes

Biofeedback is the technique of gaining greater awareness of many physiological functions of one's own body by using electronic or other instruments, and with a goal of being able to manipulate the body's systems at will. Humans conduct biofeedback naturally all the time, at varied levels of consciousness and intentionality. Biofeedback and the biofeedback loop can also be thought of as self-regulation. Some of the processes that can be controlled include brainwaves, muscle tone, skin conductance, heart rate and pain perception.

<span class="mw-page-title-main">LabVIEW</span> System-design platform and development environment

Laboratory Virtual Instrument Engineering Workbench (LabVIEW) is a system-design platform and development environment for a visual programming language developed by National Instruments.

<span class="mw-page-title-main">Dissection</span> Cutting procedure used in anatomy

Dissection is the dismembering of the body of a deceased animal or plant to study its anatomical structure. Autopsy is used in pathology and forensic medicine to determine the cause of death in humans. Less extensive dissection of plants and smaller animals preserved in a formaldehyde solution is typically carried out or demonstrated in biology and natural science classes in middle school and high school, while extensive dissections of cadavers of adults and children, both fresh and preserved are carried out by medical students in medical schools as a part of the teaching in subjects such as anatomy, pathology and forensic medicine. Consequently, dissection is typically conducted in a morgue or in an anatomy lab.

Biorobotics is an interdisciplinary science that combines the fields of biomedical engineering, cybernetics, and robotics to develop new technologies that integrate biology with mechanical systems to develop more efficient communication, alter genetic information, and create machines that imitate biological systems.

<span class="mw-page-title-main">Fetal pig</span> Unborn pigs utilized in biology classes

Fetal pigs are unborn pigs used in elementary as well as advanced biology classes as objects for dissection. Pigs, as a mammalian species, provide a good specimen for the study of physiological systems and processes due to the similarities between many pig and human organs.

<span class="mw-page-title-main">Analogue electronics</span> Electronic systems with a continuously variable signal

Analogue electronics are electronic systems with a continuously variable signal, in contrast to digital electronics where signals usually take only two levels. The term analogue describes the proportional relationship between a signal and a voltage or current that represents the signal. The word analogue is derived from the Greek word ανάλογος analogos meaning proportional.

<span class="mw-page-title-main">Favaloro University</span>

The Favaloro University is a private university in the city of Buenos Aires in Argentina. It was founded by surgeon René Favaloro in 1992; it obtained its definitive authorization on October 23, 2003, by decree 963/03 of president Néstor Kirchner. Favaloro did not see his project completely realised, for he committed suicide a few years before completion.

<span class="mw-page-title-main">Sonomicrometry</span> Measurement of small distances using acoustic signals

Sonomicrometry is a technique of measuring the distance between piezoelectric crystals based on the speed of acoustic signals through the medium they are embedded in. Typically, the crystals will be coated with an epoxy 'lens' and placed into the material facing each other. An electrical signal sent to either crystal will be transformed into sound, which passes through the medium, eventually reaching the other crystal, which converts the sound into electricity, detected by a receiver. From the time taken for sound to move between the crystals and the speed of sound in the medium, the distance between the crystals can be calculated.

PowerLab is a data acquisition system developed by ADInstruments comprising hardware and software and designed for use in life science research and teaching applications. It is commonly used in physiology, pharmacology, biomedical engineering, sports/exercise studies and psychophysiology laboratories to record and analyse physiological signals from human or animal subjects or from isolated organs. The system consists of an input device connected to a Microsoft Windows or Mac OS computer using a USB cable and LabChart software which is supplied with the PowerLab and provides the recording, display and analysis functions. The use of PowerLab and supplementary ADInstruments products have been demonstrated on the Journal of Visualised Experiments.

Process Oriented Guided Inquiry Learning (POGIL) is an activity-based, group-learning instructional strategy.

Body reactivity is usually understood as an organism's functional ability of its body to react adequately in response to influence the environment. It is not to be confused with resistance, which is its physiological stability against the influence of pathogenic factors. The body reactivity can range from homeostasis to a fight or flight response. Ultimately, they are all governed by the nervous system.

<span class="mw-page-title-main">Neuromechanics</span> Interdisciplinary field

Neuromechanics is an interdisciplinary field that combines biomechanics and neuroscience to understand how the nervous system interacts with the skeletal and muscular systems to enable animals to move. In a motor task, like reaching for an object, neural commands are sent to motor neurons to activate a set of muscles, called muscle synergies. Given which muscles are activated and how they are connected to the skeleton, there will be a corresponding and specific movement of the body. In addition to participating in reflexes, neuromechanical process may also be shaped through motor adaptation and learning.

<span class="mw-page-title-main">Golgi tendon organ</span> Proprioceptive sensory receptor organ

The Golgi tendon organ (GTO) is a proprioceptor – a type of sensory receptor that senses changes in muscle tension. It lies at the interface between a muscle and its tendon known as the musculotendinous junction also known as the myotendinous junction. It provides the sensory component of the Golgi tendon reflex.

Anant B. Parekh is professor of Physiology at the University of Oxford and a Fellow of Merton College, Oxford.

<span class="mw-page-title-main">Telecommunication Instructional Modeling System</span> Electronic telecommunications device

TIMS, or Telecommunication Instructional Modeling System, is an electronic device invented by Tim Hooper and developed by Australian engineering company Emona Instruments that is used as a telecommunications trainer in educational settings and universities.

References

  1. biopac
  2. Investigative Process & Technology in Introductory Physiology Archived June 7, 2011, at the Wayback Machine Author: Hawke, Scott D.
  3. Stavrianeas, Stasinos (2009-03-01). "Understanding data collection in the modern physiology laboratory". Advances in Physiology Education. 33 (1): 78–79. doi:10.1152/advan.90174.2008. ISSN   1043-4046.
  4. Teaching in the laboratory: Inquiry-Based Laboratory Course Improves Students’ Ability to Design Experiments and Interpret Data Marcella J. Myers and Ann B. Burgess, Advan Physiol Educ 27:26-33, 2003. doi : 10.1152/advan.00028.2002
  5. HOW WE LEARN: Comparing biology majors from large lecture classes with TA-facilitated laboratories to those from small lecture classes with faculty-facilitated laboratories Barbara E. Goodman, Karen L. Koster and Patrick L. Redinius, Advan Physiol Educ 29:112-117, 2005. doi : 10.1152/advan.00054.2004