Bistramide A

Last updated
Bistramide A
BistramideA.png
Names
Preferred IUPAC name
(2S,3R)-3-Hydroxy-N-(3-{(2R,3S,6S,8R)-8-[(3S,4E,6S)-6-hydroxy-3,5-dimethylhept-4-en-1-yl]-3-methyl-1,7-dioxaspiro[5.5]undecan-2-yl}propyl)-2-methyl-4-(2-{(2S,3S,6R)-3-methyl-6-[(3E)-2-oxopent-3-en-1-yl]oxan-2-yl}acetamido)butanamide
Identifiers
3D model (JSmol)
ChEMBL
ChemSpider
PubChem CID
  • InChI=1S/C40H68N2O8/c1-8-11-32(44)23-34-17-15-27(3)37(48-34)24-38(46)42-25-35(45)30(6)39(47)41-21-10-13-36-28(4)18-20-40(50-36)19-9-12-33(49-40)16-14-26(2)22-29(5)31(7)43/h8,11,22,26-28,30-31,33-37,43,45H,9-10,12-21,23-25H2,1-7H3,(H,41,47)(H,42,46)/b11-8+,29-22+/t26-,27-,28-,30-,31-,33+,34+,35-,36+,37-,40-/m0/s1 X mark.svgN
    Key: HXZRMADPDYFMEB-FTTMEYFSSA-N X mark.svgN
  • InChI=1/C40H68N2O8/c1-8-11-32(44)23-34-17-15-27(3)37(48-34)24-38(46)42-25-35(45)30(6)39(47)41-21-10-13-36-28(4)18-20-40(50-36)19-9-12-33(49-40)16-14-26(2)22-29(5)31(7)43/h8,11,22,26-28,30-31,33-37,43,45H,9-10,12-21,23-25H2,1-7H3,(H,41,47)(H,42,46)/b11-8+,29-22+/t26-,27-,28-,30-,31-,33+,34+,35-,36+,37-,40-/m0/s1
    Key: HXZRMADPDYFMEB-FTTMEYFSBD
  • C\C=C\C(=O)C[C@H]1CC[C@H](C)[C@H](CC(=O)NC[C@H](O)[C@H](C)C(=O)NCCC[C@H]2O[C@@]3(CCC[C@H](CC[C@H](C)\C=C(/C)\[C@H](C)O)O3)CC[C@@H]2C)O1
Properties
C40H68N2O8
Molar mass 704.990 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Bistramide A is a chemical compound originally found in the marine ascidian Lissoclinum bistratum , in the genus Lissoclinum . [1] It has been identified as a toxin. [1]

Related Research Articles

<span class="mw-page-title-main">Toxin</span> Naturally occurring organic poison

A toxin is a naturally occurring organic poison produced by metabolic activities of living cells or organisms. They occur especially as proteins, often conjugated. The term was first used by organic chemist Ludwig Brieger (1849–1919) and is derived from the word "toxic".

<span class="mw-page-title-main">Venom</span> Toxin secreted by an animal

Venom or zootoxin is a type of toxin produced by an animal that is actively delivered through a wound by means of a bite, sting, or similar action. The toxin is delivered through a specially evolved venom apparatus, such as fangs or a stinger, in a process called envenomation. Venom is often distinguished from poison, which is a toxin that is passively delivered by being ingested, inhaled, or absorbed through the skin, and toxungen, which is actively transferred to the external surface of another animal via a physical delivery mechanism.

<span class="mw-page-title-main">Botulinum toxin</span> Neurotoxic protein produced by Clostridium botulinum

Botulinum toxin, or botulinum neurotoxin, is a highly potent neurotoxic protein produced by the bacterium Clostridium botulinum and related species. It prevents the release of the neurotransmitter acetylcholine from axon endings at the neuromuscular junction, thus causing flaccid paralysis. The toxin causes the disease botulism. The toxin is also used commercially for medical and cosmetic purposes. Botulinum toxin is an acetylcholine release inhibitor and a neuromuscular blocking agent.

<i>Clostridium botulinum</i> Species of endospore forming bacterium

Clostridium botulinum is a gram-positive, rod-shaped, anaerobic, spore-forming, motile bacterium with the ability to produce the neurotoxin botulinum.

<span class="mw-page-title-main">Shiga toxin</span> Family of related toxins

Shiga toxins are a family of related toxins with two major groups, Stx1 and Stx2, expressed by genes considered to be part of the genome of lambdoid prophages. The toxins are named after Kiyoshi Shiga, who first described the bacterial origin of dysentery caused by Shigella dysenteriae. Shiga-like toxin (SLT) is a historical term for similar or identical toxins produced by Escherichia coli. The most common sources for Shiga toxin are the bacteria S. dysenteriae and some serotypes of Escherichia coli (STEC), which includes serotypes O157:H7, and O104:H4.

<span class="mw-page-title-main">Neurotoxin</span> Toxin harmful to nervous tissue

Neurotoxins are toxins that are destructive to nerve tissue. Neurotoxins are an extensive class of exogenous chemical neurological insults that can adversely affect function in both developing and mature nervous tissue. The term can also be used to classify endogenous compounds, which, when abnormally contacted, can prove neurologically toxic. Though neurotoxins are often neurologically destructive, their ability to specifically target neural components is important in the study of nervous systems. Common examples of neurotoxins include lead, ethanol, glutamate, nitric oxide, botulinum toxin, tetanus toxin, and tetrodotoxin. Some substances such as nitric oxide and glutamate are in fact essential for proper function of the body and only exert neurotoxic effects at excessive concentrations.

Ciguatera fish poisoning (CFP), also known simply as ciguatera, is a foodborne illness caused by eating reef fish whose flesh is contaminated with certain toxins called ciguatoxins. Such individual fish are said to be ciguatoxic. Symptoms may include diarrhea, vomiting, numbness, itchiness, sensitivity to hot and cold, dizziness, and weakness. The onset of symptoms varies with the amount of toxin eaten from half an hour to up to two days. The diarrhea may last for up to four days. Some symptoms typically remain for a few weeks to months. Heart difficulties such as slow heart rate and low blood pressure may also occur.

<span class="mw-page-title-main">Paralytic shellfish poisoning</span> Syndrome of shellfish poisoning

Paralytic shellfish poisoning (PSP) is one of the four recognized syndromes of shellfish poisoning, which share some common features and are primarily associated with bivalve mollusks. These shellfish are filter feeders and accumulate neurotoxins, chiefly saxitoxin, produced by microscopic algae, such as dinoflagellates, diatoms, and cyanobacteria. Dinoflagellates of the genus Alexandrium are the most numerous and widespread saxitoxin producers and are responsible for PSP blooms in subarctic, temperate, and tropical locations. The majority of toxic blooms have been caused by the morphospecies Alexandrium catenella, Alexandrium tamarense, Gonyaulax catenella and Alexandrium fundyense, which together comprise the A. tamarense species complex. In Asia, PSP is mostly associated with the occurrence of the species Pyrodinium bahamense.

<span class="mw-page-title-main">Pertussis toxin</span> Group of toxins

Pertussis toxin (PT) is a protein-based AB5-type exotoxin produced by the bacterium Bordetella pertussis, which causes whooping cough. PT is involved in the colonization of the respiratory tract and the establishment of infection. Research suggests PT may have a therapeutic role in treating a number of common human ailments, including hypertension, viral infection, and autoimmunity.

<span class="mw-page-title-main">Zearalenone</span> Chemical compound

Zearalenone (ZEN), also known as RAL and F-2 mycotoxin, is a potent estrogenic metabolite produced by some Fusarium and Gibberella species. Specifically, the Gibberella zeae, the fungal species where zearalenone was initially detected, in its asexual/anamorph stage is known as Fusarium graminearum. Several Fusarium species produce toxic substances of considerable concern to livestock and poultry producers, namely deoxynivalenol, T-2 toxin, HT-2 toxin, diacetoxyscirpenol (DAS) and zearalenone. Particularly, ZEN is produced by Fusarium graminearum, Fusarium culmorum, Fusarium cerealis, Fusarium equiseti, Fusarium verticillioides, and Fusarium incarnatum. Zearalenone is the primary toxin that binds to estrogen receptors, causing infertility, abortion or other breeding problems, especially in swine. Often, ZEN is detected together with deoxynivalenol in contaminated samples and its toxicity needs to be considered in combination with the presence of other toxins.

<span class="mw-page-title-main">Anthrax toxin</span> Tripartite protein complex secreted by virulent strains of Bacillus anthracis

Anthrax toxin is a three-protein exotoxin secreted by virulent strains of the bacterium, Bacillus anthracis—the causative agent of anthrax. The toxin was first discovered by Harry Smith in 1954. Anthrax toxin is composed of a cell-binding protein, known as protective antigen (PA), and two enzyme components, called edema factor (EF) and lethal factor (LF). These three protein components act together to impart their physiological effects. Assembled complexes containing the toxin components are endocytosed. In the endosome, the enzymatic components of the toxin translocate into the cytoplasm of a target cell. Once in the cytosol, the enzymatic components of the toxin disrupts various immune cell functions, namely cellular signaling and cell migration. The toxin may even induce cell lysis, as is observed for macrophage cells. Anthrax toxin allows the bacteria to evade the immune system, proliferate, and ultimately kill the host animal. Research on anthrax toxin also provides insight into the generation of macromolecular assemblies, and on protein translocation, pore formation, endocytosis, and other biochemical processes.

<span class="mw-page-title-main">Scyllatoxin</span> Scorpion toxin

Scyllatoxin (also leiurotoxin I) is a toxin, from the scorpion Leiurus quinquestriatus hebraeus, which blocks small-conductance Ca2+-activated K+ channels. It is named after Scylla, a sea monster from Greek mythology. Charybdotoxin is also found in the venom from the same species of scorpion, and is named after the sea monster Charybdis. In Greek mythology, Scylla and Charybdis lived on rocks on opposing sides of a narrow strait of water.

The AB5 toxins are six-component protein complexes secreted by certain pathogenic bacteria known to cause human diseases such as cholera, dysentery, and hemolytic–uremic syndrome. One component is known as the A subunit, and the remaining five components are B subunits. All of these toxins share a similar structure and mechanism for entering targeted host cells. The B subunit is responsible for binding to receptors to open up a pathway for the A subunit to enter the cell. The A subunit is then able to use its catalytic machinery to take over the host cell's regular functions.

<span class="mw-page-title-main">Delta endotoxin</span> Group of insecticidal toxins produced by the bacteria Bacillus thuringiensis

Delta endotoxins (δ-endotoxins) are pore-forming toxins produced by Bacillus thuringiensis species of bacteria. They are useful for their insecticidal action and are the primary toxin produced by Bt maize/corn. During spore formation the bacteria produce crystals of such proteins that are also known as parasporal bodies, next to the endospores; as a result some members are known as a parasporin. The Cyt (cytolytic) toxin group is a group of delta-endotoxins different from the Cry group.

'Staphylococcus aureus delta toxin is a toxin produced by Staphylococcus aureus. It has a wide spectrum of cytolytic activity.

<span class="mw-page-title-main">Clostridium difficile toxin B</span>

Clostridium difficile toxin B is a cytotoxin produced by the bacteria Clostridioides difficile, formerly known as Clostridium difficile. It is one of two major kinds of toxins produced by C. difficile, the other being a related enterotoxin. Both are very potent and lethal.

Birtoxin is a neurotoxin from the venom of the South African Spitting scorpion. By changing sodium channel activation, the toxin promotes spontaneous and repetitive firing much like pyrethroid insecticides do

<span class="mw-page-title-main">Patellamide A</span> Chemical compound

Patellamide A is a peptide natural product produced by Prochloron didemni, a cyanobacterial symbiont of Lissoclinum patella, and was first isolated in 1981. Patellamide A is one of many didemnid peptides. Other closely related peptides include patellamides B, C, and D and trunkamide. The patellamides and trunkamide show moderate cytotoxicity and activity against multidrug resistant cancer cell lines.

<span class="mw-page-title-main">Androctonus australis hector insect toxin</span>

Androctonus australis hector insect toxin also known as AaHIT is a scorpion toxin which affects voltage-gated sodium channels. Four different insect toxins, namely AaHIT1, AaHIT2, AaHIT4 and AaHIT5, can be distinguished. It targets insects, except AaHIT4, which is also toxic to crustaceans and mammals.

Ergtoxin is a toxin from the venom of the Mexican scorpion Centruroides noxius. This toxin targets hERG potassium channels.

References

  1. 1 2 Gouiffes, D.; Juge, M.; Grimaud, N.; Welin, L.; Sauviat, M. P.; Barbin, Y.; Laurent, D.; Roussakis, C.; Henichart, J. P.; Verbist, J. F. (1988). "Bistramide A, a new toxin from the urochordata Lissoclinum bistratum Sluiter: Isolation and preliminary characterization". Toxicon. 26 (12): 1129–1136. doi:10.1016/0041-0101(88)90297-8. PMID   3238698.