In the study of geometric algebras, a k-blade or a simple k-vector is a generalization of the concept of scalars and vectors to include simple bivectors, trivectors, etc. Specifically, a k-blade is a k-vector that can be expressed as the exterior product (informally wedge product) of 1-vectors, and is of grade k.
In detail: [1]
A vector subspace of finite dimension k may be represented by the k-blade formed as a wedge product of all the elements of a basis for that subspace. [6] Indeed, a k-blade is naturally equivalent to a k-subspace endowed with a volume form (an alternating k-multilinear scalar-valued function) normalized to take unit value on the k-blade.
In two-dimensional space, scalars are described as 0-blades, vectors are 1-blades, and area elements are 2-blades in this context known as pseudoscalars, in that they are elements of a one-dimensional space distinct from regular scalars.
In three-dimensional space, 0-blades are again scalars and 1-blades are three-dimensional vectors, while 2-blades are oriented area elements. In this case 3-blades are called pseudoscalars and represent three-dimensional volume elements, which form a one-dimensional vector space similar to scalars. Unlike scalars, 3-blades transform according to the Jacobian determinant of a change-of-coordinate function.
In mathematics, a geometric algebra is an extension of elementary algebra to work with geometrical objects such as vectors. Geometric algebra is built out of two fundamental operations, addition and the geometric product. Multiplication of vectors results in higher-dimensional objects called multivectors. Compared to other formalisms for manipulating geometric objects, geometric algebra is noteworthy for supporting vector division and addition of objects of different dimensions.
In geometry and physics, spinors are elements of a complex number-based vector space that can be associated with Euclidean space. A spinor transforms linearly when the Euclidean space is subjected to a slight (infinitesimal) rotation, but unlike geometric vectors and tensors, a spinor transforms to its negative when the space rotates through 360°. It takes a rotation of 720° for a spinor to go back to its original state. This property characterizes spinors: spinors can be viewed as the "square roots" of vectors.
Vector calculus, or vector analysis, is a type of advanced mathematics that has practical applications in physics and engineering. It is concerned with differentiation and integration of vector fields, primarily in 3-dimensional Euclidean space The term vector calculus is sometimes used as a synonym for the broader subject of multivariable calculus, which spans vector calculus as well as partial differentiation and multiple integration. Vector calculus plays an important role in differential geometry and in the study of partial differential equations. It is used extensively in physics and engineering, especially in the description of electromagnetic fields, gravitational fields, and fluid flow.
In physics and mathematics, a pseudovector is a quantity that behaves like a vector in many situations, but its direction does not conform when the object is rigidly transformed by rotation, translation, reflection, etc. This can also happen when the orientation of the space is changed. For example, the angular momentum is a pseudovector because it is often described as a vector, but by just changing the position of reference, angular momentum can reverse direction, which is not supposed to happen with true vectors.
In mathematics, the exterior product or wedge product of vectors is an algebraic construction used in geometry to study areas, volumes, and their higher-dimensional analogs. The exterior product of two vectors u and v, denoted by u ∧ v, is called a bivector and lives in a space called the exterior square, a vector space that is distinct from the original space of vectors. The magnitude of u ∧ v can be interpreted as the area of the parallelogram with sides u and v, which in three dimensions can also be computed using the cross product of the two vectors. Like the cross product, the exterior product is anticommutative, meaning that u ∧ v = −(v ∧ u) for all vectors u and v, but, unlike the cross product, the exterior product is associative. One way to visualize a bivector is as a family of parallelograms all lying in the same plane, having the same area and orientation, which is a choice of rotational direction within the plane (clockwise or counterclockwise from some view).
In linear algebra, a pseudoscalar is a quantity that behaves like a scalar, except that it changes sign under a parity inversion while a true scalar does not.
In mathematics, a bivector or binor or 2-vector is a quantity in exterior algebra or geometric algebra that extends the idea of scalars and vectors. If a scalar is considered a degree-zero quantity, and a vector is a degree-one quantity, then a bivector can be thought of as being of degree two. Bivectors have applications in many areas of mathematics and physics. They are related to complex numbers in two dimensions and to both pseudovectors and quaternions in three dimensions. They can be used to generate rotations in any number of dimensions, and are a useful tool for classifying such rotations. They are also used in physics, tying together a number of otherwise unrelated quantities.
In geometry and algebra, the triple product is a product of three 3-dimensional vectors, usually Euclidean vectors. The name "triple product" is used for two different products, the scalar-valued scalar triple product and, less often, the vector-valued vector triple product.
The name paravector is used for the combination of a scalar and a vector in any Clifford algebra, known as geometric algebra among physicists.
In multilinear algebra, a multivector, sometimes called Clifford number or multor, is an element of the exterior algebra Λ(V) of a vector space V. This algebra is graded, associative and alternating, and consists of linear combinations of simplek-vectors (also known as decomposablek-vectors or k-blades) of the form
A rotor is an object in the geometric algebra of a vector space that represents a rotation about the origin. The term originated with William Kingdon Clifford, in showing that the quaternion algebra is just a special case of Hermann Grassmann's "theory of extension" (Ausdehnungslehre). Hestenes defined a rotor to be any element of a geometric algebra that can be written as the product of an even number of unit vectors and satisfies , where is the "reverse" of —that is, the product of the same vectors, but in reverse order.
In mathematical physics, spacetime algebra (STA) is the application of Clifford algebra Cl1,3(R), or equivalently the geometric algebra G(M4) to physics. Spacetime algebra provides a "unified, coordinate-free formulation for all of relativistic physics, including the Dirac equation, Maxwell equation and General Relativity" and "reduces the mathematical divide between classical, quantum and relativistic physics."
In mathematics, geometric calculus extends the geometric algebra to include differentiation and integration. The formalism is powerful and can be shown to encompass other mathematical theories including vector calculus, differential geometry, and differential forms.
In mathematics, vector multiplication may refer to one of several operations between two vectors. It may concern any of the following articles:
In geometry, a plane of rotation is an abstract object used to describe or visualize rotations in space.
Geometric algebra is an extension of vector algebra, providing additional algebraic structures on vector spaces, with geometric interpretations.
Conformal geometric algebra (CGA) is the geometric algebra constructed over the resultant space of a map from points in an n-dimensional base space Rp,q to null vectors in Rp+1,q+1. This allows operations on the base space, including reflections, rotations and translations to be represented using versors of the geometric algebra; and it is found that points, lines, planes, circles and spheres gain particularly natural and computationally amenable representations.
In mathematics, a universal geometric algebra is a type of geometric algebra generated by real vector spaces endowed with an indefinite quadratic form. Some authors restrict this to the infinite-dimensional case.
In geometric algebra, the outermorphism of a linear function between vector spaces is a natural extension of the map to arbitrary multivectors. It is the unique unital algebra homomorphism of exterior algebras whose restriction to the vector spaces is the original function.
The invariant decomposition is a decomposition of the elements of pin groups into orthogonal commuting elements. It is also valid in their subgroups, e.g. orthogonal, pseudo-Euclidean, conformal, and classical groups. Because the elements of Pin groups are the composition of oriented reflections, the invariant decomposition theorem reads
Every -reflection can be decomposed into commuting factors.