Blasticidin S

Last updated
Blasticidin S
Blasticidin S.svg
Names
Preferred IUPAC name
(2S,3S,6R)-3-{(3S)-3-Amino-5-[carbamimidoyl(methyl)amino]pentanamido}-6-(4-amino-2-oxopyrimidin-1(2H)-yl)-3,6-dihydro-2H-pyran-2-carboxylic acid
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.109.057 OOjs UI icon edit-ltr-progressive.svg
KEGG
PubChem CID
UNII
  • InChI=1S/C17H26N8O5/c1-24(16(20)21)6-4-9(18)8-12(26)22-10-2-3-13(30-14(10)15(27)28)25-7-5-11(19)23-17(25)29/h2-3,5,7,9-10,13-14H,4,6,8,18H2,1H3,(H3,20,21)(H,22,26)(H,27,28)(H2,19,23,29)/t9-,10-,13+,14-/m0/s1 Yes check.svgY
    Key: CXNPLSGKWMLZPZ-ZNIXKSQXSA-N Yes check.svgY
  • InChI=1/C17H26N8O5/c1-24(16(20)21)6-4-9(18)8-12(26)22-10-2-3-13(30-14(10)15(27)28)25-7-5-11(19)23-17(25)29/h2-3,5,7,9-10,13-14H,4,6,8,18H2,1H3,(H3,20,21)(H,22,26)(H,27,28)(H2,19,23,29)/t9-,10-,13+,14-/m0/s1
    Key: CXNPLSGKWMLZPZ-ZNIXKSQXBS
  • O=C1\N=C(\N)/C=C\N1[C@@H]\2O[C@H](C(=O)O)[C@H](/C=C/2)NC(=O)C[C@@H](N)CCN(C(=[N@H])N)C
Properties
C17H26N8O5
Molar mass 422.44 g/mol
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Blasticidin S is an antibiotic that is used in biology research for selecting cells in cell culture. Cells of interest can express the blasticidin resistance genes BSD or bsr, and can then survive treatment with the antibiotic. Blasticidin S is a nucleoside analogue antibiotic, resembling the nucleoside cytidine. Blasticidin works against human cells, fungi, and bacteria, all by disrupting protein translation. It was originally described by Japanese researchers in the 1950s seeking antibiotics for rice blast fungus.

Contents

Chemistry

Color overlay showing constituent parts of Blasticidin S Blasticidin S Chemistry.svg
Color overlay showing constituent parts of Blasticidin S

A nucleoside analog, blasticidin S resembles the nucleoside cytidine. The chemical structure consists of a cytosine molecule, linked to a glucuronic acid-derived ring, linked in turn to the peptide N-methyl β-arginine. [1]

Uses

Blasticidin S is widely used in cell culture for selecting and maintaining genetically manipulated cells. Cells of interest express the blasticidin S resistance genes BSD or bsr, and can then survive blasticidin S being added to the culture media. [2] Blasticidin S is typically used at 2–300 micrograms per milliliter of media, depending on the type of cell being grown. [2]

Mechanism of action

Blasticidin prevents the growth of both eukaryotic and prokaryotic cells. It works by inhibiting termination step of translation and peptide bond formation (to lesser extent) by the ribosome. This means that cells can no longer produce new proteins through translation of mRNA. It is competitive with puromycin suggesting a highly similar binding site. [3]

Biosynthesis

The first step in blasticidin S biosynthesis is the combination of UDP-glucuronic acid with cytosine to form cytosylglucuronic acid (CGA). Given the product name, the enzyme that performs this combination is called CGA synthase. [1]

Cosmid cloning experiments from the Blasticidin S producer Streptomyces griseochromogenes , followed by evaluation of the putative biosynthetic gene cluster via heterologous reconstitution of Blasticidin S production in Streptomyces lividans , indicated that a 20 Kbp gene cluster with 19 genes, plus possibly a peptidase outside the gene cluster that acts on the final leucylblasticidin S (LBS) intermediate, was sufficient for reconstitution of Blasticidin S biosynthesis. [3]

Resistance genes

Resistance to blasticidin S can be conferred by either of two deaminases: BSD, originally isolated from Aspergillus terreus or bsr, isolated from Bacillus cereus . Both deaminases work by modifying blasticidin S directly, replacing the amine on the cytosine ring with a hydroxyl group, resulting in the inactive deaminohydroxy-blasticin S. [2] [4]

bsr and BSD are the most commonly used resistance genes. The proteins produced from these genes enable the cells carrying them to produce proteins in the presence of blasticidin.

History

In the 1950s, a drug screening program was designed in Japan to discover a new antibiotic that prevents blast disease by the fungus Magnaporthe grisea . [5]

Related Research Articles

<i>Aspergillus fumigatus</i> Species of fungus

Aspergillus fumigatus is a species of fungus in the genus Aspergillus, and is one of the most common Aspergillus species to cause disease in individuals with an immunodeficiency.

<span class="mw-page-title-main">Cytidine diphosphate</span> Chemical compound

Cytidine diphosphate, abbreviated CDP, is a nucleoside diphosphate. It is an ester of pyrophosphoric acid with the nucleoside cytidine. CDP consists of the pyrophosphate group, the pentose sugar ribose, and the nucleobase cytosine.

<span class="mw-page-title-main">Daptomycin</span> Antibiotic

Daptomycin, sold under the brand name Cubicin among others, is a lipopeptide antibiotic used in the treatment of systemic and life-threatening infections caused by Gram-positive organisms.

<span class="mw-page-title-main">Viomycin</span> Chemical compound

Viomycin is a member of the tuberactinomycin family, a group of nonribosomal peptide antibiotics exhibiting anti-tuberculosis activity. The tuberactinomycin family is an essential component in the drug cocktail currently used to fight infections of Mycobacterium tuberculosis. Viomycin was the first member of the tuberactinomycins to be isolated and identified, and was used to treat TB until it was replaced by the less toxic, but structurally related compound, capreomycin. The tuberactinomycins target bacterial ribosomes, binding RNA and disrupting bacterial protein synthesis and certain forms of RNA splicing. Viomycin is produced by the actinomycete Streptomyces puniceus.

<span class="mw-page-title-main">Activation-induced cytidine deaminase</span> Enzyme that creates mutations in DNA

Activation-induced cytidine deaminase, also known as AICDA, AID and single-stranded DNA cytosine deaminase, is a 24 kDa enzyme which in humans is encoded by the AICDA gene. It creates mutations in DNA by deamination of cytosine base, which turns it into uracil. In other words, it changes a C:G base pair into a U:G mismatch. The cell's DNA replication machinery recognizes the U as a T, and hence C:G is converted to a T:A base pair. During germinal center development of B lymphocytes, error-prone DNA repair following AID action also generates other types of mutations, such as C:G to A:T. AID is a member of the APOBEC family.

<span class="mw-page-title-main">Gliotoxin</span> Chemical compound

Gliotoxin is a sulfur-containing mycotoxin that belongs to a class of naturally occurring 2,5-diketopiperazines produced by several species of fungi, especially those of marine origin. It is the most prominent member of the epipolythiopiperazines, a large class of natural products featuring a diketopiperazine with di- or polysulfide linkage. These highly bioactive compounds have been the subject of numerous studies aimed at new therapeutics. Gliotoxin was originally isolated from Gliocladium fimbriatum, and was named accordingly. It is an epipolythiodioxopiperazine metabolite that is one of the most abundantly produced metabolites in human invasive Aspergillosis (IA).

<i>Aspergillus terreus</i> Species of fungus

Aspergillus terreus, also known as Aspergillus terrestris, is a fungus (mold) found worldwide in soil. Although thought to be strictly asexual until recently, A. terreus is now known to be capable of sexual reproduction. This saprotrophic fungus is prevalent in warmer climates such as tropical and subtropical regions. Aside from being located in soil, A. terreus has also been found in habitats such as decomposing vegetation and dust. A. terreus is commonly used in industry to produce important organic acids, such as itaconic acid and cis-aconitic acid, as well as enzymes, like xylanase. It was also the initial source for the drug mevinolin (lovastatin), a drug for lowering serum cholesterol.

<span class="mw-page-title-main">Thienamycin</span> Chemical compound

Thienamycin is one of the most potent naturally produced antibiotics known thus far, discovered in Streptomyces cattleya in 1976. Thienamycin has excellent activity against both Gram-positive and Gram-negative bacteria and is resistant to bacterial β-lactamase enzymes. Thienamycin is a zwitterion at pH 7.

In enzymology, a blasticidin-S deaminase (EC 3.5.4.23) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">APOBEC1</span> Protein-coding gene in the species Homo sapiens

Apolipoprotein B mRNA editing enzyme, catalytic polypeptide 1 also known as C->U-editing enzyme APOBEC-1 is a protein that in humans is encoded by the APOBEC1 gene.

<span class="mw-page-title-main">Cytidine deaminase</span> Protein-coding gene in the species Homo sapiens

Cytidine deaminase is an enzyme that in humans is encoded by the CDA gene.

<span class="mw-page-title-main">UCK2</span> Protein-coding gene in the species Homo sapiens

Uridine-cytidine kinase 2 (UCK2) is an enzyme that in humans is encoded by the UCK2 gene.

<span class="mw-page-title-main">APOBEC3A</span> Protein-coding gene in the species Homo sapiens

Apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3A, also known as APOBEC3A, or A3A is a gene of the APOBEC3 family found in humans, non-human primates, and some other mammals. It is a single-domain DNA cytidine deaminase with antiviral effects. While other members of the family such as APOBEC3G are believed to act by editing ssDNA by removing an amino group from cytosine in DNA, introducing a cytosine to uracil change which can ultimately lead to a cytosine to thymine mutation, one study suggests that APOBEC3A can inhibit parvoviruses by another mechanism. The cellular function of APOBEC3A is likely to be the destruction of foreign DNA through extensive deamination of cytosine.Stenglein MD, Burns MB, Li M, Lengyel J, Harris RS. "APOBEC3 proteins mediate the clearance of foreign DNA from human cells". Nature Structural & Molecular Biology. 17 (2): 222–9. doi:10.1038/nsmb.1744. PMC 2921484. PMID 20062055.

<span class="mw-page-title-main">Thiostrepton</span> Chemical compound

Thiostrepton is a natural cyclic oligopeptide antibiotic of the thiopeptide class, derived from several strains of streptomycetes, such as Streptomyces azureus and Streptomyces laurentii. Thiostrepton is a natural product of the ribosomally synthesized and post-translationally modified peptide (RiPP) class.

Streptogramin A is a group of antibiotics within the larger family of antibiotics known as streptogramins. They are synthesized by the bacteria Streptomyces virginiae. The streptogramin family of antibiotics consists of two distinct groups: group A antibiotics contain a 23-membered unsaturated ring with lactone and peptide bonds while group B antibiotics are depsipeptides. While structurally different, these two groups of antibiotics act synergistically, providing greater antibiotic activity than the combined activity of the separate components. These antibiotics have until recently been commercially manufactured as feed additives in agriculture, although today there is increased interest in their ability to combat antibiotic-resistant bacteria, particularly vancomycin-resistant bacteria.

Streptogramin B is a subgroup of the streptogramin antibiotics family. These natural products are cyclic hexa- or hepta depsipeptides produced by various members of the genus of bacteria Streptomyces. Many of the members of the streptogramins reported in the literature have the same structure and different names; for example, pristinamycin IA = vernamycin Bα = mikamycin B = osteogrycin B.

Radical SAM enzymes belong to a superfamily of enzymes that use an iron-sulfur cluster (4Fe-4S) to reductively cleave S-adenosyl-L-methionine (SAM) to generate a radical, usually a 5′-deoxyadenosyl radical (5'-dAdo), as a critical intermediate. These enzymes utilize this radical intermediate to perform diverse transformations, often to functionalize unactivated C-H bonds. Radical SAM enzymes are involved in cofactor biosynthesis, enzyme activation, peptide modification, post-transcriptional and post-translational modifications, metalloprotein cluster formation, tRNA modification, lipid metabolism, biosynthesis of antibiotics and natural products etc. The vast majority of known radical SAM enzymes belong to the radical SAM superfamily, and have a cysteine-rich motif that matches or resembles CxxxCxxC. Radical SAM enzymes comprise the largest superfamily of metal-containing enzymes.

<span class="mw-page-title-main">Bottromycin</span> Chemical compound

Bottromycin is a macrocyclic peptide with antibiotic activity. It was first discovered in 1957 as a natural product isolated from Streptomyces bottropensis. It has been shown to inhibit methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococci (VRE) among other Gram-positive bacteria and mycoplasma. Bottromycin is structurally distinct from both vancomycin, a glycopeptide antibiotic, and methicillin, a beta-lactam antibiotic.

Ribosomally synthesized and post-translationally modified peptides (RiPPs), also known as ribosomal natural products, are a diverse class of natural products of ribosomal origin. Consisting of more than 20 sub-classes, RiPPs are produced by a variety of organisms, including prokaryotes, eukaryotes, and archaea, and they possess a wide range of biological functions.

<span class="mw-page-title-main">Nosiheptide</span> Chemical compound

Nosiheptide is a thiopeptide antibiotic produced by the bacterium Streptomyces actuosus.

References

  1. 1 2 Niu G, Tan H (February 2015). "Nucleoside antibiotics: biosynthesis, regulation, and biotechnology". Trends Microbiol. 23 (2): 110–9. doi:10.1016/j.tim.2014.10.007. PMID   25468791.
  2. 1 2 3 "Blasticidin S HCl Protocols". ThermoFisher Scientific. Retrieved 22 April 2021.
  3. 1 2 Cone, Martha C.; Yin, Xihou; Grochowski, Laura L.; Parker, Morgan R.; Zabriskie, T. Mark (2003-09-04). "The Blasticidin S Biosynthesis Gene Cluster from Streptomyces griseochromogenes: Sequence Analysis, Organization, and Initial Characterization". ChemBioChem. 4 (9). Wiley: 821–828. doi:10.1002/cbic.200300583. ISSN   1439-4227. PMID   12964155. S2CID   20991778.
  4. Kimura M, Yamamoto M, Furuichi M, Kumasaka T, Yamaguchi I (2002). "An unexpected gift from fungicide metabolism studies: blasticidin S deaminase (BSD) from Aspergillus terreus". Progress in Biotechnology. 22: 55–60. doi:10.1016/S0921-0423(02)80043-0. ISBN   9780444507396.
  5. Natural Products Isolation: Separation Methods for Antimicrobials, Antivirals, and Enzyme Inhibitors. Wagman G. H., Elsevier R. C.; p. 191 (1988).