Bochner's theorem (Riemannian geometry)

Last updated

In mathematics, Salomon Bochner proved in 1946 that any Killing vector field of a compact Riemannian manifold with negative Ricci curvature must be zero. Consequently the isometry group of the manifold must be finite. [1] [2] [3]

Contents

Discussion

The theorem is a corollary of Bochner's more fundamental result which says that on any connected Riemannian manifold of negative Ricci curvature, the length of a nonzero Killing vector field cannot have a local maximum. In particular, on a closed Riemannian manifold of negative Ricci curvature, every Killing vector field is identically zero. Since the isometry group of a complete Riemannian manifold is a Lie group whose Lie algebra is naturally identified with the vector space of Killing vector fields, it follows that the isometry group is zero-dimensional. [4] Bochner's theorem then follows from the fact that the isometry group of a closed Riemannian manifold is compact. [5]

Bochner's result on Killing vector fields is an application of the maximum principle as follows. As an application of the Ricci commutation identities, the formula

holds for any vector field X on a pseudo-Riemannian manifold. [6] [7] As a consequence, there is

In the case that X is a Killing vector field, this simplifies to [8]

In the case of a Riemannian metric, the left-hand side is nonpositive at any local maximum of the length of X. However, on a Riemannian metric of negative Ricci curvature, the right-hand side is strictly positive wherever X is nonzero. So if X has a local maximum, then it must be identically zero in a neighborhood. Since Killing vector fields on connected manifolds are uniquely determined from their value and derivative at a single point, it follows that X must be identically zero. [9]

Notes

  1. Kobayashi & Nomizu 1963, Corollary VI.5.4; Petersen 2016, Corollary 8.2.3.
  2. Kobayashi 1972.
  3. Wu 2017.
  4. Kobayashi & Nomizu 1963, Theorem VI.3.4; Petersen 2016, p. 316.
  5. Kobayashi & Nomizu 1963, Theorem VI.3.4.
  6. In an alternative notation, this says that
  7. Taylor 2011, p. 305.
  8. Petersen 2016, Proposition 8.2.1.
  9. Kobayashi & Nomizu 1963, Theorem 5.3; Petersen 2016, Theorem 8.2.2; Taylor 2011, p. 305.

Related Research Articles

Riemann curvature tensor Tensor field in Riemannian geometry

In the mathematical field of differential geometry, the Riemann curvature tensor or Riemann–Christoffel tensor is the most common way used to express the curvature of Riemannian manifolds. It assigns a tensor to each point of a Riemannian manifold. It is a local invariant of Riemannian metrics which measures the failure of the second covariant derivatives to commute. A Riemannian manifold has zero curvature if and only if it is flat, i.e. locally isometric to the Euclidean space. The curvature tensor can also be defined for any pseudo-Riemannian manifold, or indeed any manifold equipped with an affine connection.

Exponential map (Riemannian geometry)

In Riemannian geometry, an exponential map is a map from a subset of a tangent space TpM of a Riemannian manifold M to M itself. The (pseudo) Riemannian metric determines a canonical affine connection, and the exponential map of the (pseudo) Riemannian manifold is given by the exponential map of this connection.

In differential geometry, the Ricci curvature tensor, named after Gregorio Ricci-Curbastro, is a geometric object which is determined by a choice of Riemannian or pseudo-Riemannian metric on a manifold. It can be considered, broadly, as a measure of the degree to which the geometry of a given metric tensor differs locally from that of ordinary Euclidean space or pseudo-Euclidean space.

Parallel transport Construct in differential geometry

In geometry, parallel transport is a way of transporting geometrical data along smooth curves in a manifold. If the manifold is equipped with an affine connection, then this connection allows one to transport vectors of the manifold along curves so that they stay parallel with respect to the connection.

In Riemannian geometry, the sectional curvature is one of the ways to describe the curvature of Riemannian manifolds with dimension greater than 1. The sectional curvature Kp) depends on a two-dimensional linear subspace σp of the tangent space at a point p of the manifold. It can be defined geometrically as the Gaussian curvature of the surface which has the plane σp as a tangent plane at p, obtained from geodesics which start at p in the directions of σp. The sectional curvature is a real-valued function on the 2-Grassmannian bundle over the manifold.

Holonomy Concept in differential geometry

In differential geometry, the holonomy of a connection on a smooth manifold is a general geometrical consequence of the curvature of the connection measuring the extent to which parallel transport around closed loops fails to preserve the geometrical data being transported. For flat connections, the associated holonomy is a type of monodromy and is an inherently global notion. For curved connections, holonomy has nontrivial local and global features.

Curvature of Riemannian manifolds

In mathematics, specifically differential geometry, the infinitesimal geometry of Riemannian manifolds with dimension greater than 2 is too complicated to be described by a single number at a given point. Riemann introduced an abstract and rigorous way to define curvature for these manifolds, now known as the Riemann curvature tensor. Similar notions have found applications everywhere in differential geometry.

In the mathematical field of Riemannian geometry, the fundamental theorem of Riemannian geometry states that on any Riemannian manifold there is a unique affine connection which is torsion-free and metric-compatible, called the Levi-Civita connection or (pseudo-)Riemannian connection of the given metric. Because it is canonically defined by such properties, often this connection is automatically used when given a metric.

In the mathematical field of differential geometry, there are various splitting theorems on when a pseudo-Riemannian manifold can be given as a metric product. The best-known is the Cheeger–Gromoll splitting theorem for Riemannian manifolds, although there has also been research into splitting of Lorentzian manifolds.

In differential geometry, the Weyl curvature tensor, named after Hermann Weyl, is a measure of the curvature of spacetime or, more generally, a pseudo-Riemannian manifold. Like the Riemann curvature tensor, the Weyl tensor expresses the tidal force that a body feels when moving along a geodesic. The Weyl tensor differs from the Riemann curvature tensor in that it does not convey information on how the volume of the body changes, but rather only how the shape of the body is distorted by the tidal force. The Ricci curvature, or trace component of the Riemann tensor contains precisely the information about how volumes change in the presence of tidal forces, so the Weyl tensor is the traceless component of the Riemann tensor. It is a tensor that has the same symmetries as the Riemann tensor with the extra condition that it be trace-free: metric contraction on any pair of indices yields zero.

Symmetric space A (pseudo-)Riemannian manifold whose geodesics are reversible.

In mathematics, a symmetric space is a Riemannian manifold whose group of symmetries contains an inversion symmetry about every point. This can be studied with the tools of Riemannian geometry, leading to consequences in the theory of holonomy; or algebraically through Lie theory, which allowed Cartan to give a complete classification. Symmetric spaces commonly occur in differential geometry, representation theory and harmonic analysis.

In mathematics, Bochner's formula is a statement relating harmonic functions on a Riemannian manifold to the Ricci curvature. The formula is named after the American mathematician Salomon Bochner.

In mathematics, in particular in differential geometry, mathematical physics, and representation theory a Weitzenböck identity, named after Roland Weitzenböck, expresses a relationship between two second-order elliptic operators on a manifold with the same principal symbol. Usually Weitzenböck formulae are implemented for G-invariant self-adjoint operators between vector bundles associated to some principal G-bundle, although the precise conditions under which such a formula exists are difficult to formulate. This article focuses on three examples of Weitzenböck identities: from Riemannian geometry, spin geometry, and complex analysis.

In Riemannian geometry and pseudo-Riemannian geometry, the Gauss–Codazzi equations are fundamental formulas which link together the induced metric and second fundamental form of a submanifold of a Riemannian or pseudo-Riemannian manifold.

The Yamabe problem refers to a conjecture in the mathematical field of differential geometry, which was resolved in the 1980s. It is a statement about the scalar curvature of Riemannian manifolds:

Let (M,g) be a closed smooth Riemannian manifold. Then there exists a positive and smooth function f on M such that the Riemannian metric fg has constant scalar curvature.

In mathematics — specifically, differential geometry — the Bochner identity is an identity concerning harmonic maps between Riemannian manifolds. The identity is named after the American mathematician Salomon Bochner.

Shoshichi Kobayashi Japanese mathematician

Shoshichi Kobayashi was a Japanese mathematician. He was the eldest brother of electrical engineer and computer scientist Hisashi Kobayashi. His research interests were in Riemannian and complex manifolds, transformation groups of geometric structures, and Lie algebras.

In Riemannian geometry, Schur's lemma is a result that says, heuristically, whenever certain curvatures are pointwise constant then they are forced to be globally constant. The proof is essentially a one-step calculation, which has only one input: the second Bianchi identity.

Theodore Frankel was a mathematician who introduced the Andreotti–Frankel theorem and the Frankel conjecture.

In the mathematical field of differential geometry, a Codazzi tensor is a symmetric 2-tensor whose covariant derivative is also symmetric. Such tensors arise naturally in the study of Riemannian manifolds with harmonic curvature or harmonic Weyl tensor. In fact, existence of Codazzi tensors impose strict conditions on the curvature tensor of the manifold. Also, the second fundamental form of an immersed hypersurface in a space form is a Codazzi tensor.

References