Bring's curve

Last updated
Fundamental icosagon with dodecadodecahedral graph in green and its dual in violet. It is a quotient of the order-4 pentagonal tiling and its dual square tiling.
20-gon edges marked with the same letter are equal. Bring sextic with dual graphs.svg
Fundamental icosagon with dodecadodecahedral graph in green and its dual in violet. It is a quotient of the order-4 pentagonal tiling and its dual square tiling.
20-gon edges marked with the same letter are equal.
Small stellated dodecahedron.png
Dodecadodecahedron.png
Bring's curve is related to the small stellated dodecahedron and the dodecadodecahedron. [1]

In mathematics, Bring's curve (also called Bring's surface and, by analogy with the Klein quartic, the Bring sextic) is the curve in cut out by the homogeneous equations

Contents

It was named by Klein (2003 , p.157) after Erland Samuel Bring who studied a similar construction in 1786 in a Promotionschrift submitted to the University of Lund. Note that the roots xi of the Bring quintic satisfies Bring's curve since for

The automorphism group of the curve is the symmetric group S5 of order 120, given by permutations of the 5 coordinates. This is the largest possible automorphism group of a genus 4 complex curve.

The curve can be realized as a triple cover of the sphere branched in 12 points, and is the Riemann surface associated to the small stellated dodecahedron. It has genus 4. The full group of symmetries (including reflections) is the direct product , which has order 240.

Fundamental domain and systole

Bring's curve can be obtained as a Riemann surface by associating sides of a hyperbolic icosagon (see fundamental polygon). The identification pattern is given in the adjoining diagram. The icosagon (of area , by the Gauss-Bonnet theorem) can be tessellated by 240 (2,4,5) triangles. The actions that transport one of these triangles to another give the full group of automorphisms of the surface (including reflections). Discounting reflections, we get the 120 automorphisms mentioned in the introduction. Note that 120 is less than 252, the maximum number of orientation preserving automorphisms allowed for a genus 4 surface, by Hurwitz's automorphism theorem. Therefore, Bring's surface is not a Hurwitz surface. This also tells us that there does not exist a Hurwitz surface of genus 4.

The full group of symmetries has the following presentation:

,

where is the identity action, is a rotation of order 5 about the centre of the fundamental polygon, is a rotation of order 2 at the vertex where 4 (2,4,5) triangles meet in the tessellation, and is reflection in the real line. From this presentation, information about the linear representation theory of the symmetry group of Bring's surface can be computed using GAP. In particular, the group has four 1 dimensional, four 4 dimensional, four 5 dimensional, and two 6 dimensional irreducible representations, and we have

as expected.

The systole of the surface has length

and multiplicity 20, a geodesic loop of that length consisting of the concatenated altitudes of twelve of the 240 (2,4,5) triangles. Similarly to the Klein quartic, Bring's surface does not maximize the systole length among compact Riemann surfaces in its topological category (that is, surfaces having the same genus) despite maximizing the size of the automorphism group. The systole is presumably maximized by the surface referred to a M4 in ( Schmutz 1993 ). The systole length of M4 is

and has multiplicity 36.

Spectral theory

Little is known about the spectral theory of Bring's surface, however, it could potentially be of interest in this field. The Bolza surface and Klein quartic have the largest symmetry groups among compact Riemann surfaces of constant negative curvature in genera 2 and 3 respectively, and thus it has been conjectured that they maximize the first positive eigenvalue in the Laplace spectrum. There is strong numerical evidence to support this hypothesis, particularly in the case of the Bolza surface, although providing a rigorous proof is still an open problem. Following this pattern, one may reasonably conjecture that Bring's surface maximizes the first positive eigenvalue of the Laplacian (among surfaces in its topological class).

See also

Related Research Articles

<span class="mw-page-title-main">Riemann surface</span> One-dimensional complex manifold

In mathematics, particularly in complex analysis, a Riemann surface is a one-dimensional complex manifold.

In mathematics, the projective special linear group PSL(2, 7), isomorphic to GL(3, 2), is a finite simple group that has important applications in algebra, geometry, and number theory. It is the automorphism group of the Klein quartic as well as the symmetry group of the Fano plane. With 168 elements, PSL(2, 7) is the smallest nonabelian simple group after the alternating group A5 with 60 elements, isomorphic to PSL(2, 5).

<span class="mw-page-title-main">Klein quartic</span> Compact Riemann surface of genus 3

In hyperbolic geometry, the Klein quartic, named after Felix Klein, is a compact Riemann surface of genus 3 with the highest possible order automorphism group for this genus, namely order 168 orientation-preserving automorphisms, and 168 × 2 = 336 automorphisms if orientation may be reversed. As such, the Klein quartic is the Hurwitz surface of lowest possible genus; see Hurwitz's automorphisms theorem. Its (orientation-preserving) automorphism group is isomorphic to PSL(2, 7), the second-smallest non-abelian simple group after the alternating group A5. The quartic was first described in (Klein 1878b).

In mathematics, Hurwitz's automorphisms theorem bounds the order of the group of automorphisms, via orientation-preserving conformal mappings, of a compact Riemann surface of genus g > 1, stating that the number of such automorphisms cannot exceed 84(g − 1). A group for which the maximum is achieved is called a Hurwitz group, and the corresponding Riemann surface a Hurwitz surface. Because compact Riemann surfaces are synonymous with non-singular complex projective algebraic curves, a Hurwitz surface can also be called a Hurwitz curve. The theorem is named after Adolf Hurwitz, who proved it in (Hurwitz 1893).

In mathematics, a dessin d'enfant is a type of graph embedding used to study Riemann surfaces and to provide combinatorial invariants for the action of the absolute Galois group of the rational numbers. The name of these embeddings is French for a "child's drawing"; its plural is either dessins d'enfant, "child's drawings", or dessins d'enfants, "children's drawings".

<span class="mw-page-title-main">Icosahedral symmetry</span> 3D symmetry group

In mathematics, and especially in geometry, an object has icosahedral symmetry if it has the same symmetries as a regular icosahedron. Examples of other polyhedra with icosahedral symmetry include the regular dodecahedron and the rhombic triacontahedron.

<span class="mw-page-title-main">Octahedral symmetry</span> 3D symmetry group

A regular octahedron has 24 rotational symmetries, and 48 symmetries altogether. These include transformations that combine a reflection and a rotation. A cube has the same set of symmetries, since it is the polyhedron that is dual to an octahedron.

<span class="mw-page-title-main">Small stellated dodecahedron</span> A Kepler-Poinsot polyhedron

In geometry, the small stellated dodecahedron is a Kepler-Poinsot polyhedron, named by Arthur Cayley, and with Schläfli symbol {52,5}. It is one of four nonconvex regular polyhedra. It is composed of 12 pentagrammic faces, with five pentagrams meeting at each vertex.

<span class="mw-page-title-main">Great stellated dodecahedron</span> Kepler–Poinsot polyhedron

In geometry, the great stellated dodecahedron is a Kepler–Poinsot polyhedron, with Schläfli symbol {52,3}. It is one of four nonconvex regular polyhedra.

<span class="mw-page-title-main">Great icosahedron</span> Kepler-Poinsot polyhedron with 20 faces

In geometry, the great icosahedron is one of four Kepler–Poinsot polyhedra, with Schläfli symbol {3,52} and Coxeter-Dynkin diagram of . It is composed of 20 intersecting triangular faces, having five triangles meeting at each vertex in a pentagrammic sequence.

<span class="mw-page-title-main">Heptagonal tiling</span> Tiling of the hyperbolic plane

In geometry, a heptagonal tiling is a regular tiling of the hyperbolic plane. It is represented by Schläfli symbol of {7,3}, having three regular heptagons around each vertex.

<span class="mw-page-title-main">Order-7 triangular tiling</span>

In geometry, the order-7 triangular tiling is a regular tiling of the hyperbolic plane with a Schläfli symbol of {3,7}.

In mathematics, the Bolza surface, alternatively, complex algebraic Bolza curve, is a compact Riemann surface of genus with the highest possible order of the conformal automorphism group in this genus, namely of order 48. The full automorphism group is the semi-direct product of order 96. An affine model for the Bolza surface can be obtained as the locus of the equation

In the theory of Riemann surfaces and hyperbolic geometry, the triangle group (2,3,7) is particularly important for its connection to Hurwitz surfaces, namely Riemann surfaces of genus g with the largest possible order, 84(g − 1), of its automorphism group.

<span class="mw-page-title-main">Hurwitz surface</span>

In Riemann surface theory and hyperbolic geometry, a Hurwitz surface, named after Adolf Hurwitz, is a compact Riemann surface with precisely 84(g − 1) automorphisms, where g is the genus of the surface. This number is maximal by virtue of Hurwitz's theorem on automorphisms (Hurwitz 1893). They are also referred to as Hurwitz curves, interpreting them as complex algebraic curves (complex dimension 1 = real dimension 2).

In Riemann surface theory and hyperbolic geometry, the Macbeath surface, also called Macbeath's curve or the Fricke–Macbeath curve, is the genus-7 Hurwitz surface.

In the mathematical theory of Riemann surfaces, the first Hurwitz triplet is a triple of distinct Hurwitz surfaces with the identical automorphism group of the lowest possible genus, namely 14. The explanation for this phenomenon is arithmetic. Namely, in the ring of integers of the appropriate number field, the rational prime 13 splits as a product of three distinct prime ideals. The principal congruence subgroups defined by the triplet of primes produce Fuchsian groups corresponding to the triplet of Riemann surfaces.

In mathematics, systolic inequalities for curves on surfaces were first studied by Charles Loewner in 1949. Given a closed surface, its systole, denoted sys, is defined to be the least length of a loop that cannot be contracted to a point on the surface. The systolic area of a metric is defined to be the ratio area/sys2. The systolic ratio SR is the reciprocal quantity sys2/area. See also Introduction to systolic geometry.

The Hurwitz quaternion order is a specific order in a quaternion algebra over a suitable number field. The order is of particular importance in Riemann surface theory, in connection with surfaces with maximal symmetry, namely the Hurwitz surfaces. The Hurwitz quaternion order was studied in 1967 by Goro Shimura, but first explicitly described by Noam Elkies in 1998. For an alternative use of the term, see Hurwitz quaternion.

In mathematics, a genus g surface is a surface formed by the connected sum of g distinct tori: the interior of a disk is removed from each of g distinct tori and the boundaries of the g many disks are identified, forming a g-torus. The genus of such a surface is g.

References

  1. Weber, Matthias (2005). "Kepler's small stellated dodecahedron as a Riemann surface". Pacific J. Math. Vol. 220. pp. 167–182. pdf