British Standard Whitworth

Last updated

British Standard Whitworth (BSW) is an imperial-unit-based screw thread standard, based on the Whitworth thread devised and specified by Joseph Whitworth in 1841, which was the world's first national screw thread standard,

Contents

History

The Whitworth thread was the world's first national screw thread standard, [1] devised and specified by Joseph Whitworth in 1841. Until then, the only standardization was what little had been done by individual people and companies, with some companies' in-house standards spreading a bit within their industries. Whitworth's new standard specified a 55° thread angle and a thread depth of 0.640327p and a radius of 0.137329p, where p is the pitch. The thread pitch increases with diameter in steps specified on a chart.

The Whitworth thread system was later to be adopted as a British Standard to become British Standard Whitworth (BSW). An example of the use of the Whitworth thread are the Royal Navy's Crimean War gunboats. These are the first instance of mass-production techniques being applied to marine engineering, as the following quotation from the obituary from The Times of 24 January 1887 for Sir Joseph Whitworth (1803–1887) shows:

The Crimean War began, and Sir Charles Napier demanded of the Admiralty 120 gunboats, each with engines of 60 horsepower, for the campaign of 1855 in the Baltic. There were just ninety days in which to meet this requisition, and, short as the time was, the building of the gunboats presented no difficulty. It was otherwise however with the engines, and the Admiralty were in despair. Suddenly, by a flash of the mechanical genius which was inherent in him, the late Mr John Penn solved the difficulty, and solved it quite easily. He had a pair of engines on hand of the exact size. He took them to pieces and he distributed the parts among the best machine shops in the country, telling each to make ninety sets exactly in all respects to the sample. The orders were executed with unfailing regularity, and he actually completed ninety sets of engines of 60 horsepower in ninety days – a feat which made the great Continental Powers stare with wonder, and which was possible only because the Whitworth standards of measurement and of accuracy and finish were by that time thoroughly recognised and established throughout the country.

An original example of the gunboat type engine was raised from the wreck of the SS Xantho by the Western Australian Museum. On disassembly, all its threads were shown to be of the Whitworth type. [2]

With the adoption of BSW by British railway companies, many of which had previously used their own standards both for threads and for bolt head and nut profiles, and the growing need generally for standardisation in manufacturing specifications, it came to dominate British manufacturing.

In the US, BSW was replaced when steel bolts replaced iron[ citation needed ], but was still being used for some aluminium parts as late as the 1960s and 1970s when metric-based standards replaced the Imperial ones.

American Unified Coarse was originally based on almost the same Imperial fractions. The Unified thread angle is 60° and has flattened crests (Whitworth crests are rounded). From 14 in up to 1 12 in, thread pitch is the same in both systems except that the thread pitch for the 12 in bolt is 12 threads per inch (tpi) in BSW versus 13 tpi in the UNC.[ clarification needed ]

Thread form

Whitworth thread form Whitworth Thread.svg
Whitworth thread form

The form of a Whitworth thread is based on a fundamental triangle with an angle of 55° at each peak and valley. The sides are at a flank angle of Θ = 27.5° perpendicular to the axis. Thus, if the thread pitch is p, the height of the fundamental triangle is H = p/(2tanΘ) = 0.96049106p. However, the top and bottom 16 of each of these triangles is cut off, so the actual depth of thread (the difference between major and minor diameters) is 23 of that value, or h = p/(3tanΘ) = 0.64032738p. The peaks are further reduced by rounding them with a 2×(90° − Θ) = 180° − 55° = 125° circular arc. This arc has a height of e = HsinΘ/6 = 0.073917569p (leaving a straight flank depth of h − 2e = 0.49249224p) and a radius of r = e/(1 − sinΘ) = 0.13732908p.

Whitworth thread sizes [3] [4] [5]
Major
diameter
Thread
density
Thread
pitch
Minor
diameter
75% tap
drill size
(in)(mm)(in−1)(mm)(in)(mm)(in)(mm)
1161.588600.4230.04121.046#561.2
3322.381480.5290.06711.704#491.9
183.175400.6350.09302.362#392.6
5323.969320.7940.11622.951#303.2
3164.763241.0580.13413.406#263.7
7325.556241.0580.16544.201#164.5
146.350201.2700.18604.724#95.1
5167.938181.4110.24146.132F6.6
389.525161.5880.29507.4935168.0
71611.113141.8140.34608.788U9.4
1212.700122.1170.39339.990276410.7
91614.288122.1170.455811.577316412.3
5815.875112.3090.508612.918173213.7
111617.463112.3090.571114.506193215.2
3419.050102.5400.621915.796213216.6
131620.638102.5400.684417.384233218.2
7822.22592.8220.732718.611496419.5
151623.81392.8220.795220.198536421.1
125.40083.1750.839921.3337822.3
1 1828.57573.6290.942023.927636425.1
1 1431.75073.6291.067027.1021 76428.3
1 3834.92564.2331.161629.5051 73230.9
1 1238.10064.2331.286632.6801 51634.0
1 5841.27555.0801.368934.7701 71636.4
1 3444.45055.0801.493937.9451 91639.6
1 7847.6254 125.6441.590440.3961 5842.2
250.8004 125.6441.715443.5711 3445.4
2 1853.9754 125.6441.840446.7461 7848.6
2 1457.15046.3501.929849.017251.1
2 3860.32546.3502.054852.1922 1854.2
2 1263.50046.3502.179855.3672 1457.4
2 5866.67546.3502.304858.5422 3860.6
2 3469.8503 127.2572.384160.5562 1262.9
2 7873.0253 127.2572.509163.7312 5866.1
376.2003 127.2572.634166.9062 3469.2
3 1482.5503 147.8152.856072.542375.0
3 1288.9003 147.8153.106078.8923 1481.4
3 3495.25038.4673.323184.4073 3887.1
4101.60038.4673.573190.7573 5893.5
4 14107.9502 788.8353.804696.6373 7899.5
4 12114.3002 788.8354.0546102.9874 18105.8
4 34120.6502 349.2364.2843108.8214 38111.8
5127.0002 349.2364.5343115.1714 58118.1
5 14133.3502 589.6764.7621120.9574 78124.1
5 12139.7002 589.6765.0121127.3075 18130.4
5 34146.0502 1210.1605.2377133.0385 38136.3
6152.4002 1210.1605.4877139.3885 58142.6


Spanner (Wrench) size

To simplify matters, the term hexagon is used in this section to denote either bolt head or nut.

Whitworth and BSF spanner markings refer to the bolt diameter, rather than the distance across the flats of the hexagon (A/F) as in other standards. Confusion can arise because each Whitworth hexagon was originally one size larger than that of the corresponding BSF fastener. This leads to instances where for example, a spanner marked 716 BSF is the same size as one marked 38 W. In both cases the spanner jaw width of 0.710 in, the width across the hexagon flat, is the same.

Certain branches of industry used Whitworth fasteners with a smaller hexagon (identical to BSF of the same bolt diameter) under the designation "AutoWhit" or Auto-Whit[ citation needed ] [6] and this series was formalised by the British Engineering Standards Association in 1929 as standard No. 193, with the 'original' series being No. 190 and the BSF series No. 191. [7]

During World War II the smaller size hexagon was adopted more widely to save metal [8] and this usage persisted thereafter. Thus it is today common to encounter a Whitworth hexagon which does not fit the nominally correct spanner and following the previous example, a more modern spanner may be marked 716 BS to indicate that they have a jaw size of 0.710 in and designed to take either the (later) 716 BSW or 716 BSF hexagon. [9] [10] [11]

Whitworth fasteners with the larger hexagons to BS 190 are now often colloquially referred to as 'pre-war' size, even though that is not strictly correct.

Comparison with other standards

Hex head sizes
SizeBS 190BS 1083DIN
(in)(in)(mm)(in)(mm)(mm)
180.3388.6
3160.44511.3
140.52513.30.44511.311
5160.60015.20.52513.314
380.71018.00.60015.217
7160.82020.80.71018.019
120.92023.40.82020.822
9161.01025.70.92023.4
581.10027.91.01025.727
341.30033.01.20030.532
781.48037.61.30033.036
11.67042.41.48037.641
1 181.86047.21.67042.4
1 142.05052.11.86047.2
1 122.41061.22.22056.4
1 342.76070.12.58065.5
23.15080.02.76070.1
Two spanners, both nominal size /8 in, with a diagram superimposed to show the logic that allows them both to be nominal size /8 in when their actual sizes are clearly different (across-flats distance vs screw diameter). The across-flats definition is the common standard today, and has been for many decades. The larger spanner in this photo is from the 1920s or earlier. Its face was polished to allow the size stamp to show well in the photograph. This example is American, but it illustrates the way that spanners for Whitworth fasteners were typically labelled. 5-8 vs 5-8 003.jpg
Two spanners, both nominal size 8 in, with a diagram superimposed to show the logic that allows them both to be nominal size 8 in when their actual sizes are clearly different (across-flats distance vs screw diameter). The across-flats definition is the common standard today, and has been for many decades. The larger spanner in this photo is from the 1920s or earlier. Its face was polished to allow the size stamp to show well in the photograph. This example is American, but it illustrates the way that spanners for Whitworth fasteners were typically labelled.

The British Standard Fine (BSF) standard has the same thread angle as the BSW, but has a finer thread pitch and smaller thread depth. This is more like the modern "mechanical" screw and was used for fine machinery and for steel bolts.

The British Standard Cycle (BSC) standard which replaced the Cycle Engineers' Institute (CEI) standard was used on British bicycles and motorcycles. It uses a thread angle of 60° compared to the Whitworth 55° and very fine thread pitches.

The British Association screw thread (BA) standard is sometimes classed with the Whitworth standard fasteners because it is often found in the same machinery as the Whitworth standard. However it is actually a metric based standard that uses a 47.5° thread angle and has its own set of head sizes. BA threads have diameters of 6 mm (0BA) and smaller, and were and still are particularly used in precision machinery.

The Whitworth 55° angle remains commonly used today worldwide in form of the 15 British standard pipe threads defined in ISO 7, which are commonly used in water supply, cooling, pneumatics, and hydraulic systems. These threads are designated by a number between 1/16 and 6 that originates from the nominal internal diameter (i/d) in inches of a steel pipe for which these threads were designed. These pipe thread designations do not refer to any thread diameter.

Other threads that used the Whitworth 55° angle include Brass Threads, British Standard Conduit (BSCon), Model Engineers (ME), and British Standard Copper (BSCopper).

Current usage

The standard tripod mount on all SLR cameras and, where fitted, on compact cameras, and therefore on all tripods and monopods, is 1/4 Inch Whitworth. Larger format cameras use 5/16 inch Whitworth with tripod adaptors from 1/4 inch Whitworth if necessary.

The widely used (except in the US) British Standard Pipe thread, as defined by the ISO 228 standard (formerly BS-2779), uses Whitworth standard thread form. Even in the United States, personal computer liquid cooling components use the G14 thread from this series.

The Leica Thread-Mount used on rangefinder cameras and on many enlarging lenses is 1 1732 in by 26 turns-per-inch Whitworth, an artifact of this having been developed by a German company specializing in microscopes and thus equipped with tooling capable of handling threads in inches and in Whitworth.

The 532 in Whitworth threads have been the standard Meccano thread for many years and it is still the thread in use by the French Meccano Company.

Stage lighting suspension bolts are most commonly 38 in and 12 in BSW. Companies that initially converted to metric threads have converted back, after complaints that the finer metric threads increased the time and difficulty of setup, which often takes place at the top of a ladder or scaffold.[ citation needed ]

Fixings for garden gates traditionally used Whitworth carriage bolts, and these are still the standard supplied in UK and Australia.

Historical misuse

British Morris and MG engines from 1923 to 1955 were built using metric threads but with bolt heads and nuts dimensioned for Whitworth spanners and sockets. [12] In 1919 Morris Motors took over the French Hotchkiss engine works which had moved to Coventry during the First World War. The Hotchkiss machine tools were of metric thread but metric spanners were not readily available in Britain at the time, so fasteners were made with metric thread but Whitworth heads. [13]

In the 2011 movie Cars 2 by Disney / Pixar, the vital clue to the discovery of the villain, Sir Miles Axlerod, is that he uses Whitworth bolts. Although Axlerod does not precisely resemble any real car (whereas numerous other characters are closely modelled on real cars), he seems most closely to match the original Range Rover Classic. In reality, early model Range Rovers used parts with imperial dimensions, although the photograph of the villain's engine is virtually identical to the later 3.5 litre single plenum Rover V8 (A design purchased from GM's Buick).

See also

Other thread standards:

Related Research Articles

Adjustable spanner

An adjustable spanner or adjustable wrench is an open-end wrench with a movable jaw, allowing it to be used with different sizes of fastener head rather than just one fastener size, as with a conventional fixed spanner. Several other names are in use, including casually imprecise use of the US trademark crescent wrench.

Wrench

A wrench or spanner is a tool used to provide grip and mechanical advantage in applying torque to turn objects—usually rotary fasteners, such as nuts and bolts—or keep them from turning.

The Unified Thread Standard (UTS) defines a standard thread form and series—along with allowances, tolerances, and designations—for screw threads commonly used in the United States and Canada. It is the main standard for bolts, nuts, and a wide variety of other threaded fasteners used in these countries. It has the same 60° profile as the ISO metric screw thread, but the characteristic dimensions of each UTS thread were chosen as an inch fraction rather than a millimeter value. The UTS is currently controlled by ASME/ANSI in the United States.

National pipe thread

American National Standard Pipe Thread standards, often called national pipe thread (NPT) standards for short, are U.S. national technical standards for screw threads used on threaded pipes and pipe fittings. They include both tapered and straight thread series for various purposes including rigidity, pressure-tight sealing, or both. The various types are each named with a symbol and a full name; examples of the symbols include NPT, NPS, NPTF, NPSC, and others.

Socket wrench

A socket wrench is a type of wrench that inserts into a socket to turn a fastener, typically in the form of a nut or bolt.

Screw thread

A screw thread, often shortened to thread, is a helical structure used to convert between rotational and linear movement or force. A screw thread is a ridge wrapped around a cylinder or cone in the form of a helix, with the former being called a straight thread and the latter called a tapered thread. A screw thread is the essential feature of the screw as a simple machine and also as a threaded fastener.

British Association screw threads, or BA screw threads, are a largely obsolete set of small screw threads, the largest being 0BA at 6 mm diameter. They were, and to some extent still are, used for miniature instruments and modelling.

British Standard Pipe (BSP) technical standards for screw threads that has been adopted internationally for interconnecting and sealing pipes and fittings by mating an external (male) thread with an internal (female) thread. It has been adopted as standard in plumbing and pipe fitting, except in North America, where NPT and related threads are used.

British Standard Brass or British Brass Thread is an imperial unit based screw thread. It adopts the Whitworth thread form with a pitch of 26 threads per inch and a thread angle of 55 degrees for all diameters. It is often wrongly called British Standard Brass but is not actually covered by a British Standard.

The ISO metric screw thread is the most commonly used type of general-purpose screw thread worldwide. They were one of the first international standards agreed when the International Organization for Standardization (ISO) was set up in 1947.

British Standard Fine (BSF) is a screw thread form, as a fine-pitch alternative to British Standard Whitworth (BSW) thread. It was used for steel bolts and nuts on much British machinery, including cars, prior to adoption of Unified, and later Metric, standards. For highly stressed conditions, especially in motorcycles, a finer thread, British Standard Cycle (BSC), was used as well.

Screw Type of fastener characterized by a thread wrapped around a cylinder core

A screw and a bolt are similar types of fastener typically made of metal, and characterized by a helical ridge, known as a male thread. Screws and bolts are used to fasten materials by the engagement of the screw thread with a similar female thread in the matching part.

United States Standard thread, also known as Sellers Standard thread, Franklin Institute thread and American Standard thread, is a standard for inch based threaded fasteners and washers.

ISO 898 is an international standard that defines mechanical and physical properties for metric fasteners. This standard is the origin for other standards that define properties for similar metric fasteners, such as SAE J1199 and ASTM F568M. It is divided into five (nonconsecutive) parts:

Bolt (fastener)

A bolt is a form of threaded fastener with an external male thread. Bolts are very closely related to screws.

The Swiss-designed Thury screw thread is a metric thread standard that was developed in the late nineteenth century for screws used in scientific and horological instruments. The thread is named after Marc Thury, an engineer and professor at the University of Geneva who contributed heavily to the standard's development.

The Löwenherz thread is a largely obsolete metric thread form designed in the late nineteenth century and frequently applied in precision instruments. It is named after Dr. Leopold Löwenherz, who was the director of the metrology institute Physikalisch-Technische Bundesanstalt in Berlin.

Preferred metric sizes are a set of international standards and de facto standards that are designed to make using the metric system easier and simpler, especially in engineering and construction practices. One of the methods used to arrive at these preferred sizes is the use of preferred numbers and convenient numbers such as the Renard series, the 1-2-5 series to limit the number of different sizes of components needed.

References

  1. Gilbert, K. R., & Galloway, D. F., 1978, "Machine Tools". In C. Singer, et al., (Eds.), 'A history of technology. Oxford, Clarendon Press & Lee, S. (Ed.), 1900, Dictionary of national biography, Vol LXI. Smith Elder, London
  2. McCarthy, M., and Garcia, R., 2004, "Screw Threads on the SS Xantho: A Case of Standardisation in 19th Century Britain". The International Journal of Nautical Archaeology, 33. (1): 54–66.
  3. Joseph Whitworth, 1841, A Paper on an Uniform System of Screw Threads
  4. Joseph Whitworth, 1857, A Paper on Standard Decimal Measures of Length
  5. British Standards Institution. Parallel screw threads of Whitworth form – Requirements. ISBN   978-0-580-57923-3. BS 84:2007.
  6. Machinery's Screw Thread Book. 11th Edition 1941
  7. Commercial Motor Magazine, 2 April 1929
  8. WAR EMERGENCY STANDARD SPECIFICATION FOR BLACK BOLTS AND NUTS. B.S. 916–1940.
  9. Whitworth / BSF Hex Sizes, Old & New Standards Archived 17 May 2008 at the Wayback Machine
  10. Whitworth / BSF to AF (SAE) and metric sizes
  11. Additional information and spanner jaw size table
  12. Wood, J. (1977) (50 m)˜ The restoration and preservation of vintage & classic cars", Yeovil : Haynes, ISBN   0-85429-186-5
  13. Harvey, Chris (1977) (50 m)˜ The Immortal T Series, Oxford Illustrated Press, ISBN   0-902280-46-5

Bibliography