Joseph Whitworth

Last updated

Sir Joseph Whitworth

Joseph Whitworth.jpg
By unknown artist, Whitworth c.1846
Born(1803-12-21)21 December 1803
Stockport, Cheshire, England, United Kingdom
Died22 January 1887(1887-01-22) (aged 83)
Monte Carlo, Monaco
OccupationEngineer
Engineering career
Institutions Royal Society
Institution of Mechanical Engineers
Significant advanceWhitworth standardised screw threads
Awards
FRS (1857) [1]
Albert Medal (1868)

Sir Joseph Whitworth, 1st Baronet FRS FRSA (21 December 1803 – 22 January 1887) was an English engineer, entrepreneur, inventor and philanthropist. [2] In 1841, he devised the British Standard Whitworth system, which created an accepted standard for screw threads. [3] Whitworth also created the Whitworth rifle, often called the "sharpshooter" because of its accuracy, which is considered one of the earliest examples of a sniper rifle, used by some Confederate forces during the American Civil war.

Contents

Whitworth was created a baronet by Queen Victoria in 1869. [4] [5] [6] Upon his death in 1887, Whitworth bequeathed much of his fortune for the people of Manchester, with the Whitworth Art Gallery and Christie Hospital partly funded by Whitworth's money. Whitworth Street and Whitworth Hall in Manchester are named in his honour.

Whitworth's company merged with the W.G. Armstrong & Mitchell Company to become Armstrong Whitworth in 1897.

Biography

Early life

Whitworth was born in John Street, Stockport, Cheshire, where the Stockport Courthouse is today. The site is marked by a blue plaque on the back wall of the courthouse. He was the son of Charles Whitworth, a teacher and Congregational minister, and at an early age developed an interest in machinery. He was educated at Idle, near Bradford, West Riding of Yorkshire; his aptitude for mechanics became apparent when he began work for his uncle. [7]

Career

After leaving school Whitworth became an indentured apprentice to his uncle, Joseph Hulse, a cotton spinner at Amber Mill, Oakerthorpe in Derbyshire. The plan was that Whitworth would become a partner in the business. From the outset he was fascinated by the mill's machinery and soon he mastered the techniques of the cotton spinning industry but even at this age he noticed the poor standards of accuracy and was critical of the milling machinery. This early exposure to the mechanics of the industry forged in him the ambition to make machinery with much greater precision. His apprenticeship at Amber Mill lasted for a four-year term after which he worked for another four years as a mechanic in a factory in Manchester. He then moved to London where he found employment working for Henry Maudslay, the inventor of the screw-cutting lathe, alongside such people as James Nasmyth (inventor of the steam hammer) and Richard Roberts.

Whitworth developed great skill as a mechanic while working for Maudslay, developing various precision machine tools and also introducing a box casting scheme for the iron frames of machine tools that simultaneously increased their rigidity and reduced their weight.

Whitworth also worked for Holtzapffel & Co (makers of lathes used primarily for ornamental turning) and Joseph Clement. While at Clement's workshop he helped with the manufacture of Charles Babbage's calculating machine, the Difference engine. He returned to Openshaw, Manchester, in 1833 to start his own business manufacturing lathes and other machine tools, which became renowned for their high standard of workmanship. Whitworth is attributed with the introduction of the thou in 1844. [8] In 1853, along with his lifelong friend, artist and art educator George Wallis (1811–1891), he was appointed a British commissioner for the New York International Exhibition. They toured around industrial sites of several American states, and the result of their journey was a report 'The Industry of the United States in Machinery, Manufactures and Useful and Applied Arts, compiled from the Official Reports of Messrs Whitworth and Wallis, London, 1854.' [9]

The Firs, now the Chancellors Hotel & Conference Centre Chcc blue sky.jpg
The Firs, now the Chancellors Hotel & Conference Centre

Whitworth received many awards for the excellence of his designs and was financially very successful. In 1850, then a President of the Institution of Mechanical Engineers, he built a house called 'The Firs' in Fallowfield in south Manchester designed by Edward Walters. In 1854 he bought Stancliffe Hall in Darley Dale, Derbyshire and moved there with his second wife Louisa in 1872. He supplied four six-ton blocks of stone from Darley Dale quarry, for the lions of St George's Hall in Liverpool. He was conferred with Honorary Membership of the Institution of Engineers and Shipbuilders in Scotland in 1859. [10] He was elected a Fellow of the Royal Society (FRS) in 1857. [1]

A strong believer in the value of technical education, Whitworth backed the new Mechanics' Institute in Manchester (later UMIST) and helped found the Manchester School of Design. In 1868, he founded the Whitworth Scholarship for the advancement of mechanical engineering. He donated a sum of £128,000 to the government in 1868 (approximately £6.5 million in 2010) to bring "science and industry" closer together and to fund scholarships. [11] In 1869, Queen Victoria made Whitworth a baronet.

Death

The grave of Sir Joseph Whitworth Bart. In the grounds of St Helen's Parish Church, Darley Dale, Derbyshire (Whitworth's grave is the central tomb) The Grave of Sir Joseph Whitworth Bart.jpg
The grave of Sir Joseph Whitworth Bart. In the grounds of St Helen's Parish Church, Darley Dale, Derbyshire (Whitworth's grave is the central tomb)

In January 1887 at the age of 83, Sir Joseph Whitworth died in Monte Carlo where he had travelled in the hope of improving his health. He was buried at St Helen's Church, Darley Dale, Derbyshire. A detailed obituary was published in the American magazine The Manufacturer and Builder. [12] He directed his trustees to spend his fortune on philanthropic projects, which they still do to this day.

Work

Graphic representation of formulas for the pitches of threads of screw bolts JFIScrewThread300.png
Graphic representation of formulas for the pitches of threads of screw bolts
Screw-making machine from 1871 Screw making machine, 1871.png
Screw-making machine from 1871

Accuracy and standardisation

Whitworth popularised a method of producing accurate flat surfaces (see Surface plate) during the 1830s, using engineer's blue and scraping techniques on three trial surfaces. Up until his introduction of the scraping technique, the same three-plate method was employed using polishing techniques, giving less accurate results. This led to an explosion of development of precision instruments using these flat-surface generation techniques as a basis for further construction of precise shapes.

His next innovation, in 1840, was a measuring technique called "end measurements" that used a precision flat plane and measuring screw, both of his own invention. The system, with a precision of one millionth of an inch (25  nm), was demonstrated at the Great Exhibition of 1851.

In 1841 Whitworth devised a standard for screw threads with a fixed thread angle of 55° and having a standard pitch for a given diameter. This soon became the first nationally standardised system; its adoption by the railway companies, who until then had all used different screw threads, led to its widespread acceptance. It later became a British Standard, "British Standard Whitworth", abbreviated to BSW and governed by BS 84:1956.

Whitworth rifled musket

Whitworth was commissioned by the War Department of the British government to design a replacement for the calibre .577-inch Pattern 1853 Enfield, whose shortcomings had been revealed during the recent Crimean War. The Whitworth rifle had a smaller bore of 0.451 inches (11.455 mm) which was hexagonal, fired an elongated hexagonal bullet and had a faster rate of twist rifling [one turn in twenty inches] than the Enfield, and its performance during tests in 1859 was superior to the Enfield's in every way. The test was reported in The Times on 23 April as a great success. However, the new bore design was found to be prone to fouling and it was four times more expensive to manufacture than the Enfield, so it was rejected by the British government, only to be adopted by the French Army. An unspecified number of Whitworth rifles found their way to the Confederate states in the American Civil War, where they were called "Whitworth Sharpshooters". The rifles were capable of sub-MOA groups at 500 yards. [13] It was often called the "sharpshooter" because of its accuracy, which is considered one of the earliest examples of a sniper rifle. [14] [15] [16] [17] [18]

Queen Victoria opened the first meeting of the National Rifle Association at Wimbledon, in 1860 by firing a Whitworth rifle from a fixed mechanical rest. The rifle scored a bull's eye at a range of 400 yards (366 m).

Whitworth rifled cannon breech-loading artillery

12-pounder Whitworth rifle CW Arty Whitworth.jpg
12-pounder Whitworth rifle

Whitworth also designed a large rifled breech-loading gun with a 2.75 inches (69.85 mm) bore, a 12 pounds 11 ounces (5.75 kg) projectile and a range of about 6 miles (10 km). The spirally-grooved projectile was patented in 1855. This was rejected by the British Army, who preferred the guns from Armstrong, but was used in the American Civil War.

While trying to increase the bursting strength of his gun barrels, Whitworth patented a process called "fluid-compressed steel" for casting steel under pressure and built a new steel works near Manchester. Some of his castings were shown at the Great Exhibition in Paris c.1883.

Legacy

Scholarships

One of the most prominent forms of his generosity was his development of the Whitworth Scholarships with the Institution of Mechanical Engineers. Still running to this day, this provides financial opportunities for young engineers with a strong blend of academic and practical abilities. The Whitworth Scholarship programmes still exist with 10-15 scholarships being awarded each year. [19] The scholarships are directed at outstanding engineers who, like Sir Joseph Whitworth, have excellent academic and practical skills and the qualities needed to succeed in industry, who are wishing to embark/or have already commenced on an engineering degree-level programme of any engineering discipline. As of 2018, the Scholarship pays up to £5,450 per year for up to four years [20] in the case of a full time undergraduate. The handling and administration of the awards is now carried out by the Institution of Mechanical Engineers. [21] Since 2006, a Whitworth Senior Scholarship was agreed by the trustees to support Postgraduate Research leading to a MPhil, PhD or EngD.

Memorials

Plaque from the memorial in Whitworth Park, Darley Dale erected in 1894 Whitworth memorial.JPG
Plaque from the memorial in Whitworth Park, Darley Dale erected in 1894

Richard Copley Christie was a friend of Whitworth's. By Whitworth's will, Christie was appointed one of three legatees, each of whom was left more than half a million pounds for their own use, 'they being each of them aware of the objects' to which these funds would have been put by Whitworth. They chose to spend more than a fifth of the money on support for Owens College, together with the purchase of land now occupied by the Manchester Royal Infirmary. In 1897, Christie personally assigned more than £50,000 for the erection of the Whitworth Hall, to complete the front quadrangle of Owens College. He was president of the Whitworth Institute from 1890 to 1895 and was much interested in the medical and other charities of Manchester, especially the Cancer Pavilion and Home, of whose committee he was chairman from 1890 to 1893, and which later became the Christie Hospital. [22] Part of his bequest was used to construct the Whitworth Institute in Darley Dale.

The university's Whitworth Art Gallery (formerly the Whitworth Institute) and adjacent Whitworth Park were established as part of his bequest to Manchester after his death. Nearby Whitworth Park Halls of Residence also bears his name, as does Whitworth Street, one of the main streets in Manchester city centre, running from London Road to the south end of Deansgate. Near 'The Firs' a cycleway behind Owens Park is called Whitworth Lane. In Darley Dale is another Whitworth Park. In recognition of his achievements and contributions to education in Manchester, the Whitworth Building on the University of Manchester's Main Campus is named in his honour.

Whitworth Society

In 1923, the Whitworth Society was founded by Prof. Hele-Shaw FRS, then president of the Institution of Mechanical Engineers to support all Whitworth Scholars and to promote engineering in the UK. [19] The Society brings together those Whitworth Scholars who have benefited from Sir Joseph Whitworth's generosity.

Related Research Articles

<span class="mw-page-title-main">Lathe</span> Machine tool which rotates the work piece on its axis

A lathe is a machine tool that rotates a workpiece about an axis of rotation to perform various operations such as cutting, sanding, knurling, drilling, deformation, facing, threading and turning, with tools that are applied to the workpiece to create an object with symmetry about that axis.

<span class="mw-page-title-main">Henry Maudslay</span> English inventor and machine tool innovator (1771–1831)

Henry Maudslay was an English machine tool innovator, tool and die maker, and inventor. He is considered a founding father of machine tool technology. His inventions were an important foundation for the Industrial Revolution.

<span class="mw-page-title-main">Machine tool</span> Machine for handling or machining metal or other rigid materials

A machine tool is a machine for handling or machining metal or other rigid materials, usually by cutting, boring, grinding, shearing, or other forms of deformations. Machine tools employ some sort of tool that does the cutting or shaping. All machine tools have some means of constraining the workpiece and provide a guided movement of the parts of the machine. Thus, the relative movement between the workpiece and the cutting tool is controlled or constrained by the machine to at least some extent, rather than being entirely "offhand" or "freehand". It is a power-driven metal cutting machine which assists in managing the needed relative motion between cutting tool and the job that changes the size and shape of the job material.

<span class="mw-page-title-main">Sniper rifle</span> Type of rifle used for long-range engagements against enemy personnel

A sniper rifle is a high-precision, long-range rifle. Requirements include high accuracy, reliability, and mobility, concealment, and optics, for anti-personnel, anti-materiel and surveillance uses by military snipers. The modern sniper rifle is a portable shoulder-fired rifle with either a bolt action or semi-automatic action, fitted with a telescopic sight for extreme accuracy and chambered for a high-ballistic performance centerfire cartridge.

<span class="mw-page-title-main">Darley Dale</span> Human settlement in England

Darley Dale, formerly Darley, is a town and civil parish in the Derbyshire Dales district of Derbyshire, England, with a population of 5,413. It lies north of Matlock, on the River Derwent and the A6 road. The town forms part of a built-up area with both Matlock and Rowsley.

<span class="mw-page-title-main">Richard Roberts (engineer)</span>

Richard Roberts was a Welsh patternmaker and engineer whose development of high-precision machine tools contributed to the birth of production engineering and mass production.

Joseph Clement was a British engineer and industrialist, chiefly remembered as the maker of Charles Babbage's first difference engine, between 1824 and 1833.

British Standard Whitworth (BSW) is an imperial-unit-based screw thread standard, devised and specified by Joseph Whitworth in 1841 and later adopted as a British Standard. It was the world's first national screw thread standard, and is the basis for many other standards, such as BSF, BSP, BSCon, and BSCopper.

<span class="mw-page-title-main">Metal lathe</span> Machine tool used to remove material from a rotating workpiece

In machining, a metal lathe or metalworking lathe is a large class of lathes designed for precisely machining relatively hard materials. They were originally designed to machine metals; however, with the advent of plastics and other materials, and with their inherent versatility, they are used in a wide range of applications, and a broad range of materials. In machining jargon, where the larger context is already understood, they are usually simply called lathes, or else referred to by more-specific subtype names. These rigid machine tools remove material from a rotating workpiece via the movements of various cutting tools, such as tool bits and drill bits.

<span class="mw-page-title-main">Polygonal rifling</span> Type of gun barrel rifling

Polygonal rifling is a type of gun barrel rifling where the traditional sharp-edged "lands and grooves" are replaced by less pronounced "hills and valleys", so the barrel bore has a polygonal cross-sectional profile.

<span class="mw-page-title-main">American Precision Museum</span> United States historic place

The American Precision Museum is located in the renovated 1846 Robbins & Lawrence factory on South Main Street in Windsor, Vermont. The building is said to be the first U.S. factory at which precision interchangeable parts were made, giving birth to the precision machine tool industry. In recognition of this history, the building was declared a National Historic Landmark in 1966. In 1987, the building was recognized by the American Society of Mechanical Engineers as an International Heritage Site, and the collection was recognized as an International Heritage Collection. For each of these designations, the armory was considered a site where pivotal events occurred in the history of American industry, as well as a place that lends itself to comprehensive interpretation of that history.

The National Engineering Laboratory (NEL) was originally one of several large government-funded public research laboratories in the UK, staffed by scientists and engineers of the Scientific Civil Service. Other such laboratories include the National Physical Laboratory (NPL), the Laboratory of the Government Chemist (LGC), the Building Research Establishment (BRE) and the Transport Research Establishment (TRL). NEL was established in 1948 at Thorntonhall under the name Mechanical Engineering Research Laboratory (MERL), in the village of the same name near East Kilbride, Glasgow, Scotland.

The Whitworth rifle was an English-made percussion rifle used in the latter half of the 19th century. A single-shot muzzleloader with excellent long-range accuracy for its era, especially when used with a telescopic sight, the Whitworth rifle was widely regarded as the world's first sniper rifle.

<span class="mw-page-title-main">Screw-cutting lathe</span> Machine for accurately cutting screw threads

A screw-cutting lathe is a machine capable of cutting very accurate screw threads via single-point screw-cutting, which is the process of guiding the linear motion of the tool bit in a precisely known ratio to the rotating motion of the workpiece. This is accomplished by gearing the leadscrew to the spindle with a certain gear ratio for each thread pitch. Every degree of spindle rotation is matched by a certain distance of linear tool travel, depending on the desired thread pitch.

<span class="mw-page-title-main">George Wallis</span> English painter

George Wallis (1811–1891) was an artist, museum curator and art educator. He was the first Keeper of Fine Art Collection at South Kensington Museum in London.

<span class="mw-page-title-main">Screw</span> Type of fastener characterized by a thread wrapped around a cylinder core

A screw is an externally helical threaded fastener capable of being tightened or released by a twisting force (torque) to the head. The most common uses of screws are to hold objects together and there are many forms for a variety of materials. Screws might be inserted into holes in assembled parts or a screw may form its own thread. The difference between a screw and a bolt is that the latter is designed to be tightened or released by torquing a nut.

<span class="mw-page-title-main">John Penn (engineer)</span> English marine engineer (1805–1878)

John Penn (1805–1878) was an English marine engineer whose firm was pre-eminent in the middle of the 19th century due to his innovations in engine and propeller systems, which led his firm to be the major supplier to the Royal Navy as it made the transition from sail to steam power. He was also president of the Institution of Mechanical Engineers on two occasions.

<span class="mw-page-title-main">Automatic lathe</span>

In metalworking and woodworking, an automatic lathe is a lathe with an automatically controlled cutting process. Automatic lathes were first developed in the 1870s and were mechanically controlled. From the advent of NC and CNC in the 1950s, the term automatic lathe has generally been used for only mechanically controlled lathes, although some manufacturers market Swiss-type CNC lathes as 'automatic'.

Manchester is one of the principal cities of the United Kingdom, gaining city status in 1853, thus becoming the first new city in over 300 years since Bristol in 1542. Often regarded as the first industrialised city, Manchester was a city built by the Industrial Revolution and had little pre-medieval history to speak of. Manchester had a population of 10,000 in 1717, but by 1911 it had burgeoned to 2.3 million.

John Penn and Sons was an English engineering company based in London, and mainly known for its marine steam engines.

References

Citations

  1. 1 2 "Fellowship of the Royal Society 1660-2015". London: Royal Society. Archived from the original on 15 October 2015.
  2. Seccombe 1900.
  3. Roe 1916, p. 101.
  4. "No. 23544". The London Gazette . 8 October 1869. p. 5446.
  5. Whitworth 1873.
  6. Anon. 1869, p. 23.
  7. Bradshaw 1985, pp. 57–58.
  8. Edkins 2009.
  9. Whitworth & Wallis 1854.
  10. "Honorary Members and Fellows". IESIS. Archived from the original on 3 October 2020.
  11. "Scholarships and Awards". imeche.org. Retrieved 30 October 2012.
  12. "Scientific: Sir Joseph Whitworh". The Manufacturer and Builder. Vol. 19, no. 6. June 1887. pp. 133–134.
  13. Confederate Whitworth Sniper: Hexagonal Bullets in 1860 on YouTube
  14. Atkinson 1996.
  15. Bradshaw 1985.
  16. Kilburn 1987.
  17. Kilburn 1990.
  18. Lea 1948.
  19. 1 2 "Whitworth Scholarship". whitworthsociety.org. Retrieved 7 December 2018.
  20. "Whitworth Scholarship Awards (Undergraduate & Masters) - Details". whitworthscholarships.org.uk. Retrieved 27 March 2020.
  21. "Whitworth Scholarship Awards". imeche.org. Retrieved 27 March 2020.
  22. Ward & Curthoys 2004.

Sources

Professional and academic associations
Preceded by President of the Institution of Mechanical Engineers
1856–1857
Succeeded by
Preceded by President of the Institution of Mechanical Engineers
1865–1866
Succeeded by
John Penn
Baronetage of the United Kingdom
New creation Baronet
(of The Firs)
1869–1887
Extinct