CALY

Last updated
CALY
Identifiers
Aliases CALY , DRD1IP, NSG3, calcyon neuron specific vesicular protein
External IDs OMIM: 604647; MGI: 1915816; HomoloGene: 9256; GeneCards: CALY; OMA:CALY - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_015722
NM_001321617

NM_001190385
NM_001190386
NM_026769

RefSeq (protein)

NP_001308546
NP_056537

NP_001177314
NP_001177315
NP_081045

Location (UCSC) Chr 10: 133.32 – 133.34 Mb Chr 7: 139.65 – 139.66 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Neuron-specific vesicular protein calcyon is a protein that in humans is encoded by the CALY gene. [5] [6] Its alternative name is Calcyon.

Contents

Function

The protein encoded by this gene is a type II single transmembrane protein. It is required for maximal stimulated calcium release after stimulation of purinergic or muscarinic but not beta-adrenergic receptors. The encoded protein interacts with dopamine receptor D1 and may interact with other DA receptor subtypes and/or GPCRs. [6]

Interactions

Related Research Articles

<span class="mw-page-title-main">PTK2B</span> Protein-coding gene in humans

Protein tyrosine kinase 2 beta is an enzyme that in humans is encoded by the PTK2B gene.

<span class="mw-page-title-main">Adaptor-related protein complex 2, alpha 1</span> Protein-coding gene in the species Homo sapiens

AP-2 complex subunit alpha-1 is a protein that in humans is encoded by the AP2A1 gene.

<span class="mw-page-title-main">SYT1</span> Protein-coding gene in the species Homo sapiens

Synaptotagmin-1 is a protein that in humans is encoded by the SYT1 gene.

Muscarinic acetylcholine receptor M<sub>3</sub> Protein and coding gene in humans

The muscarinic acetylcholine receptor, also known as cholinergic/acetylcholine receptor M3, or the muscarinic 3, is a muscarinic acetylcholine receptor encoded by the human gene CHRM3.

<span class="mw-page-title-main">Proteinase-activated receptor 1</span> Mammalian protein found in humans

Proteinase-activated receptor 1 (PAR1) also known as protease-activated receptor 1, coagulation factor II receptor and thrombin receptor is a protein that in humans is encoded by the F2R gene. PAR1 is a G protein-coupled receptor and one of four protease-activated receptors involved in the regulation of thrombotic response. Highly expressed in platelets and endothelial cells, PAR1 plays a key role in mediating the interplay between coagulation and inflammation, which is important in the pathogenesis of inflammatory and fibrotic lung diseases. It is also involved both in disruption and maintenance of endothelial barrier integrity, through interaction with either thrombin or activated protein C, respectively.

<span class="mw-page-title-main">TAS2R14</span> Protein-coding gene in the species Homo sapiens

Taste receptor type 2 member 14 is a protein that in humans is encoded by the TAS2R14 gene.

<span class="mw-page-title-main">CLTC</span> Protein-coding gene in the species Homo sapiens

Clathrin heavy chain 1 is a protein that in humans is encoded by the CLTC gene.

<span class="mw-page-title-main">Arrestin beta 1</span> Human protein and coding gene

Arrestin, beta 1, also known as ARRB1, is a protein which in humans is encoded by the ARRB1 gene.

<span class="mw-page-title-main">S100A10</span> Protein-coding gene in the species Homo sapiens

S100 calcium-binding protein A10 (S100A10), also known as p11, is a protein that is encoded by the S100A10 gene in humans and the S100a10 gene in other species. S100A10 is a member of the S100 family of proteins containing two EF-hand calcium-binding motifs. S100 proteins are localized in the cytoplasm and/or nucleus of a wide range of cells. They regulate a number of cellular processes such as cell cycle progression and differentiation. The S100 protein is implicated in exocytosis and endocytosis by reorganization of F-actin.

<span class="mw-page-title-main">AP2A2</span> Protein-coding gene in the species Homo sapiens

AP-2 complex subunit alpha-2 is a protein that in humans is encoded by the AP2A2 gene.

<span class="mw-page-title-main">AP2B1</span> Protein-coding gene in the species Homo sapiens

AP-2 complex subunit beta is a protein that in humans is encoded by the AP2B1 gene.

<span class="mw-page-title-main">PLCD1</span> Protein-coding gene in the species Homo sapiens

1-Phosphatidylinositol-4,5-bisphosphate phosphodiesterase delta-1 is an enzyme that in humans is encoded by the PLCD1 gene. PLCd1 is essential to maintain homeostasis of the skin.

<span class="mw-page-title-main">GNG2</span> Protein-coding gene in the species Homo sapiens

Guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-2 is a protein that in humans is encoded by the GNG2 gene.

<span class="mw-page-title-main">PIK3C2A</span> Protein-coding gene in the species Homo sapiens

Phosphatidylinositol-4-phosphate 3-kinase C2 domain-containing alpha polypeptide is an enzyme that in humans is encoded by the PIK3C2A gene.

<span class="mw-page-title-main">HOMER1</span> Protein and coding gene in humans

Homer protein homolog 1 or Homer1 is a neuronal protein that in humans is encoded by the HOMER1 gene. Other names are Vesl and PSD-Zip45.

<span class="mw-page-title-main">PLCE1</span> Protein-coding gene in the species Homo sapiens

Phospholipase C epsilon 1 (PLCE1) is an enzyme that in humans is encoded by the PLCE1 gene. This gene encodes a phospholipase enzyme (PLCE1) that catalyzes the hydrolysis of phosphatidylinositol-4,5-bisphosphate to generate two second messengers: inositol 1,4,5-triphosphate (IP3) and diacylglycerol (DAG). Mutations in this gene cause early-onset nephrotic syndrome and have been associated with respiratory chain deficiency with diffuse mesangial sclerosis.

<span class="mw-page-title-main">SH2B2</span> Protein-coding gene in the species Homo sapiens

SH2B adapter protein 2 is a protein that in humans is encoded by the SH2B2 gene.

<span class="mw-page-title-main">Calcium-binding protein 1</span> Protein-coding gene in the species Homo sapiens

Calcium binding protein 1 is a protein that in humans is encoded by the CABP1 gene. Calcium-binding protein 1 is a calcium-binding protein discovered in 1999. It has two EF hand motifs and is expressed in neuronal cells in such areas as hippocampus, habenular nucleus of the epithalamus, Purkinje cell layer of the cerebellum, and the amacrine cells and cone bipolar cells of the retina.

<span class="mw-page-title-main">PLCB4</span> Protein-coding gene in the species Homo sapiens

1-Phosphatidylinositol-4,5-bisphosphate phosphodiesterase beta-4 is an enzyme that in humans is encoded by the PLCB4 gene.

<span class="mw-page-title-main">SPARCL1</span> Protein-coding gene in the species Homo sapiens

SPARC-like protein 1, also known as hevin, is a secreted protein with high structural similarity to SPARC. It interacts with the extracellular matrix to create intermediate states of cell adhesion. Due to its dynamic extracellular roles, being implicated in cancer metastasis and inflammation, it is considered a matricellular protein. In humans hevin is encoded by the SPARCL1 gene.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000130643 Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000025468 Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Heijtz RD, Alexeyenko A, Castellanos FX (July 2007). "Calcyon mRNA expression in the frontal-striatal circuitry and its relationship to vesicular processes and ADHD". Behavioral and Brain Functions. 3 (1): 33. doi: 10.1186/1744-9081-3-33 . PMC   1949817 . PMID   17623072.
  6. 1 2 "CALY calcyon neuron specific vesicular protein [ Homo sapiens (human) ]".
  7. Kim JH, Jung HG, Kim A, Shim HS, Hyeon SJ, Lee YS, et al. (March 2021). "Hevin-calcyon interaction promotes synaptic reorganization after brain injury". Cell Death and Differentiation. 28 (9): 2571–2588. doi: 10.1038/s41418-021-00772-5 . PMC   8408247 . PMID   33753902.

Further reading