CDC 1604

Last updated
CDC 1604
CDC 1604 Overview.png
CDC 1604 with a figure as scale
Design
Manufacturer Control Data Corporation
DesignerSeymour Cray
Release date1960 (1960)
Units sold50+
Price$ 1,030,000 (192 kilobytes) [1]
Casing
DimensionsHeight : 176 cm (69 in)
Length : 227 cm (89 in)
Width : 68 cm (27 in) [2]
Weight2,200 pounds (1,000 kg)
Power5.5 kW @ 208 V 60 Hz [2]
System
Operating system Co-Op Monitor (developed by the users' organization)
CPU 48-bit processor @ 208 kHz [2]
Memory 192 kilobytes (32767 x 48bits) [2]
Storage -
MIPS 0.1
FLOPS -
Predecessor-
Successor CDC 3600, 3800 and 3400

The CDC 1604 was a 48-bit computer designed and manufactured by Seymour Cray and his team at the Control Data Corporation (CDC). The 1604 is known as one of the first commercially successful transistorized computers. (The IBM 7090 was delivered earlier, in November 1959.) Legend has it that the 1604 designation was chosen by adding CDC's first street address (501 Park Avenue) to Cray's former project, the ERA-UNIVAC 1103. [3]

Contents

A cut-down 24-bit version, designated the CDC 924, was shortly thereafter produced, and delivered to NASA. [4]

The first 1604 was delivered to the U.S. Navy Post Graduate School in January 1960 [5] for JOVIAL applications supporting major Fleet Operations Control Centers primarily for weather prediction in Hawaii, London, and Norfolk, Virginia. By 1964, over 50 systems were built. The CDC 3600, which added five op codes, succeeded the 1604, and "was largely compatible" with it. [6]

One of the 1604s was shipped to the Pentagon to DASA (Defense Atomic Support Agency) and used during the Cuban missile crises to predict possible strikes by the Soviet Union against the United States.

A 12-bit minicomputer, called the CDC 160, was often used as an I/O processor in 1604 systems. A stand-alone version of the 160 called the CDC 160-A was arguably the first minicomputer. [7]

Architecture

2-views drawing of a CDC 1604 with scaling CDC 1604 Scaling.png
2-views drawing of a CDC 1604 with scaling
CDC 1604 registers
47. . .14. . .00(bit position)
Operand registers(48 bits)
AAccumulator
QAuxiliary Arithmetic register
Program counter(15 bits)
 PProgram counter
Index registers(15 bits)
 1Index 1
 2Index 2
 3Index 3
 4Index 4
 5Index 5
 6Index 6

Memory in the CDC 1604 consisted of 32K 48-bit words of magnetic core memory with a cycle time of 6.4 microseconds. [6] It was organized as two banks of 16K words each, with odd addresses in one bank and even addresses in the other. The two banks were phased 3.2 microseconds apart, so average effective memory access time was 4.8 microseconds. The computer executed about 100,000 operations per second.

Each 48-bit word contained two 24-bit instructions. The instruction format was 6-3-15: six bits for the operation code, three bits for a "designator" (index register for memory access instructions, condition for jump (branch) instructions) and fifteen bits for a memory address (or shift count, for shift instructions).

The CPU contained a 48-bit accumulator (A), a 48-bit Auxiliary Arithmetic register (Q), a 15-bit program counter (P), and six 15-bit index registers (1-6). [8] The Q register was usually used in conjunction with A for forming a double-length register AQ or QA, participating with A in multiplication, division and logical product (masking) operations, and temporary storage of A's contents while using A for another operation. [9]

Internal integer representation used ones' complement arithmetic. Internal floating point format was 1-11-36: one bit of sign, eleven bits of offset (biased) binary exponent, and thirty-six bits of binary significand. [10]

The most-significant three bits of the accumulator were converted from digital to analog and connected to a tube audio amplifier contained in the console. This facility could be used to program audio alerts for the computer operator, or to generate music. Those familiar with the inner workings of the software could often hear what parts of a task were being performed by the CDC 1604; as a debugging aid, for example, a never-ending repetitive musical phrase indicated the program was stuck in a loop.

Uses and applications

In 1960, one of the first text-mining applications, Masquerade, was written for the Marathon Oil Company in Findlay, Ohio. Masquerade was a text-mining program that used syntactic structures underlying text data to mask out words and phrases for searching purposes. [11] During 1969, Fleet Operations Control Center, Pacific (FOCCPAC at Kunia) on Oahu in Hawaii launched an Automated Control Environment (ACE) using a cluster of five CDC 160As to supervise a multi-tasking network of four CDC 1604s.

The Minuteman I was the first U.S. solid-rocket ICBM system to be fielded. There were two entirely separate ground station designs which were developed independently. The smaller, more elegant, single silo design incorporated two redundant CDC 1604 computer systems, each equipped with dual cabinets containing four 200 bpi magnetic tape drives. The computers were used to pre-compute guidance and aiming control information. Results based on current weather and targeting information were downloaded into the missile prior to launch. Model displays of both of these ICBM ground station designs, including block models of the CDC 1604 computers, may be viewed at the Octave Chanute Aerospace Museum in Rantoul, Illinois.

The third version of the PLATO computer-based educational system was implemented on a CDC 1604-C. [12]

JOVIAL was used as the main programming language of the CDC 1604, while octal was used to program shared services supported by the CDC 160A. [13] NAVCOSSACT based at the Washington Navy Yard provided systems and training support.

The CDC 1604 was used to compose Sailboat and other artworks by Sam Schmitt and Stockton Gaines. [14]

Similar machines

The 1604 design was used by the Soviet nuclear weapons laboratory. Their BESM-6 computer, which entered production in 1968, was designed to be somewhat software compatible with the CDC 1604, [15] but it ran 10 times faster and had additional registers.

The 924

CDC 924
CDC 924 - 3D rendering with scaling.png
CDC 924 with scaling
Design
Manufacturer Control Data Corporation
DesignerSeymour Cray
Release date1961 (1961) [16]
Units sold12+ (1964)
Price$ 180,000 [1]
Casing
DimensionsHeight : 173 cm (68 in)
Length : 157 cm (62 in)
Width : 66 cm (26 in) [17]
Weight1,430 pounds (650 kg) [17]
Power2.3 kW @ 208 V 60 Hz [17]
System
Operating system -
CPU 24-bit processor @ 188 kHz
Memory 24 kilobytes (8192 x 24bits) [17]
Storage -
MIPS -
FLOPS -
Predecessor-
Successor CDC 3000

The CDC 924 was a 24-bit computer that supported the use of "any input-output devices capable of communicating with the 160 and/or 1604 computer," [18] and its six independent channels permitted 3 simultaneous input operations even as 3 channels concurrently performed output.

Like many CDC processors, [8] it used ones' complement arithmetic.

Some advanced features of the 924, which included 64 instructions, were:

See also

Related Research Articles

<span class="mw-page-title-main">Accumulator (computing)</span> Register in which intermediate arithmetic and logic results of a CPU are stored

In a computer's central processing unit (CPU), the accumulator is a register in which intermediate arithmetic logic unit results are stored.

<span class="mw-page-title-main">PDP-8</span> Minicomputer product line

The PDP-8 is a 12-bit minicomputer that was produced by Digital Equipment Corporation (DEC). It was the first commercially successful minicomputer, with over 50,000 units being sold over the model's lifetime. Its basic design follows the pioneering LINC but has a smaller instruction set, which is an expanded version of the PDP-5 instruction set. Similar machines from DEC are the PDP-12 which is a modernized version of the PDP-8 and LINC concepts, and the PDP-14 industrial controller system.

<span class="mw-page-title-main">Cray-1</span> Supercomputer manufactured by Cray Research

The Cray-1 was a supercomputer designed, manufactured and marketed by Cray Research. Announced in 1975, the first Cray-1 system was installed at Los Alamos National Laboratory in 1976. Eventually, eighty Cray-1s were sold, making it one of the most successful supercomputers in history. It is perhaps best known for its unique shape, a relatively small C-shaped cabinet with a ring of benches around the outside covering the power supplies and the cooling system.

Control Data Corporation (CDC) was a mainframe and supercomputer firm. CDC was one of the nine major United States computer companies through most of the 1960s; the others were IBM, Burroughs Corporation, DEC, NCR, General Electric, Honeywell, RCA, and UNIVAC. CDC was well-known and highly regarded throughout the industry at the time. For most of the 1960s, Seymour Cray worked at CDC and developed a series of machines that were the fastest computers in the world by far, until Cray left the company to found Cray Research (CRI) in the 1970s. After several years of losses in the early 1980s, in 1988 CDC started to leave the computer manufacturing business and sell the related parts of the company, a process that was completed in 1992 with the creation of Control Data Systems, Inc. The remaining businesses of CDC currently operate as Ceridian.

<span class="mw-page-title-main">CDC 6600</span>

The CDC 6600 was the flagship of the 6000 series of mainframe computer systems manufactured by Control Data Corporation. Generally considered to be the first successful supercomputer, it outperformed the industry's prior recordholder, the IBM 7030 Stretch, by a factor of three. With performance of up to three megaFLOPS, the CDC 6600 was the world's fastest computer from 1964 to 1969, when it relinquished that status to its successor, the CDC 7600.

<span class="mw-page-title-main">IBM 650</span> Vacuum tube computer system

The IBM 650 Magnetic Drum Data-Processing Machine is an early digital computer produced by IBM in the mid-1950s. It was the first mass produced computer in the world. Almost 2,000 systems were produced, the last in 1962, and it was the first computer to make a meaningful profit. The first one was installed in late 1954 and it was the most-popular computer of the 1950s.

<span class="mw-page-title-main">History of computing hardware (1960s–present)</span> Aspect of history

The history of computing hardware starting at 1960 is marked by the conversion from vacuum tube to solid-state devices such as transistors and then integrated circuit (IC) chips. Around 1953 to 1959, discrete transistors started being considered sufficiently reliable and economical that they made further vacuum tube computers uncompetitive. Metal–oxide–semiconductor (MOS) large-scale integration (LSI) technology subsequently led to the development of semiconductor memory in the mid-to-late 1960s and then the microprocessor in the early 1970s. This led to primary computer memory moving away from magnetic-core memory devices to solid-state static and dynamic semiconductor memory, which greatly reduced the cost, size, and power consumption of computers. These advances led to the miniaturized personal computer (PC) in the 1970s, starting with home computers and desktop computers, followed by laptops and then mobile computers over the next several decades.

<span class="mw-page-title-main">Index register</span> CPU register used for modifying operand addresses

An index register in a computer's CPU is a processor register used for pointing to operand addresses during the run of a program. It is useful for stepping through strings and arrays. It can also be used for holding loop iterations and counters. In some architectures it is used for read/writing blocks of memory. Depending on the architecture it maybe a dedicated index register or a general-purpose register. Some instruction sets allow more than one index register to be used; in that case additional instruction fields may specify which index registers to use.

<span class="mw-page-title-main">UNIVAC LARC</span> Livermore Advanced Research Computer

The UNIVAC LARC, short for the Livermore Advanced Research Computer, is a mainframe computer designed to a requirement published by Edward Teller in order to run hydrodynamic simulations for nuclear weapon design. It was one of the earliest supercomputers.

<span class="mw-page-title-main">CDC 7600</span>

The CDC 7600 was the Seymour Cray-designed successor to the CDC 6600, extending Control Data's dominance of the supercomputer field into the 1970s. The 7600 ran at 36.4 MHz and had a 65 Kword primary memory using magnetic core and variable-size secondary memory. It was generally about ten times as fast as the CDC 6600 and could deliver about 10 MFLOPS on hand-compiled code, with a peak of 36 MFLOPS. In addition, in benchmark tests in early 1970 it was shown to be slightly faster than its IBM rival, the IBM System/360, Model 195. When the system was released in 1967, it sold for around $5 million in base configurations, and considerably more as options and features were added.

<span class="mw-page-title-main">CDC STAR-100</span>

The CDC STAR-100 is a vector supercomputer that was designed, manufactured, and marketed by Control Data Corporation (CDC). It was one of the first machines to use a vector processor to improve performance on appropriate scientific applications. It was also the first supercomputer to use integrated circuits and the first to be equipped with one million words of computer memory.

The Burroughs B2500 through Burroughs B4900 was a series of mainframe computers developed and manufactured by Burroughs Corporation in Pasadena, California, United States, from 1966 to 1991. They were aimed at the business world with an instruction set optimized for the COBOL programming language. They were also known as Burroughs Medium Systems, by contrast with the Burroughs Large Systems and Burroughs Small Systems.

In computer architecture, 24-bit integers, memory addresses, or other data units are those that are 24 bits wide. Also, 24-bit central processing unit (CPU) and arithmetic logic unit (ALU) architectures are those that are based on registers, address buses, or data buses of that size.

<span class="mw-page-title-main">CDC 3000 series</span>

The CDC 3000 series are a family of mainframe computers from Control Data Corporation (CDC). The first member, the CDC 3600, was a 48-bit system introduced in 1963. The same basic design led to the cut-down CDC 3400 of 1964, and then the 24-bit CDC 3300, 3200 and 3100 introduced between 1964 and 1965. The 3000 series replaced the earlier CDC 1604 and CDC 924 systems.

<span class="mw-page-title-main">CDC 6000 series</span>

The CDC 6000 series is a discontinued family of mainframe computers manufactured by Control Data Corporation in the 1960s. It consisted of the CDC 6200, CDC 6300, CDC 6400, CDC 6500, CDC 6600 and CDC 6700 computers, which were all extremely rapid and efficient for their time. Each is a large, solid-state, general-purpose, digital computer that performs scientific and business data processing as well as multiprogramming, multiprocessing, Remote Job Entry, time-sharing, and data management tasks under the control of the operating system called SCOPE. By 1970 there also was a time-sharing oriented operating system named KRONOS. They were part of the first generation of supercomputers. The 6600 was the flagship of Control Data's 6000 series.

<span class="mw-page-title-main">CDC 160 series</span>

The CDC 160 series was a series of minicomputers built by Control Data Corporation. The CDC 160 and CDC 160-A were 12-bit minicomputers built from 1960 to 1965; the CDC 160G was a 13-bit minicomputer, with an extended version of the CDC 160-A instruction set, and a compatibility mode in which it did not use the 13th bit. The 160 was designed by Seymour Cray - reportedly over a long three-day weekend. It fit into the desk where its operator sat.

In computer architecture, 12-bit integers, memory addresses, or other data units are those that are 12 bits wide. Also, 12-bit central processing unit (CPU) and arithmetic logic unit (ALU) architectures are those that are based on registers, address buses, or data buses of that size.

Varian Data Machines was a division of Varian Associates which sold minicomputers. It entered the market in 1967 through acquisition of Decision Control Inc. (DCI) in Newport Beach, California. It met stiff competition and was bought by Sperry Corporation in 1977.

<span class="mw-page-title-main">D-17B</span> Missile guidance computer

The D-17B (D17B) computer was used in the Minuteman I NS-1OQ missile guidance system. The complete guidance system contained a D-17B computer, the associated stable platform, and power supplies.

<span class="mw-page-title-main">Honeywell 316</span>

The Honeywell 316 was a popular 16-bit minicomputer built by Honeywell starting in 1969. It is part of the Series 16, which includes the Models 116, 316 (1969), 416 (1966), 516 (1966) and DDP-716 (1969). They were commonly used for data acquisition and control, remote message concentration, clinical laboratory systems, Remote Job Entry and time-sharing. The Series-16 computers are all based on the DDP-116 designed by Gardner Hendrie at Computer Control Company, Inc. (3C) in 1964.

References

  1. 1 2 1964 Computer Survey, PDF
  2. 1 2 3 4 CDC 1604 Computer, Vol 1, Description and Operation (Dec 60, pdf)
  3. Curiously, a very detailed 1975 oral history with CDC's computer engineers does not confirm this legend: when the "1604" question was asked, the insiders laughed and responded: "It was quite popular at the time that this was the origin" and "We've never been able to substantiate it. However, there's still lots of people who believe it." Page 21 of the oral history provides the official CDC explanation for 1604: the original goal was to support 16K of memory and 4 tape units.
  4. "The BUNCH".
  5. "Control Data Corporation". Computing History.
  6. 1 2 "Real Machines with 24-bit and 48-bit words".
  7. Ed Thelen. "CDC 160A" . Retrieved April 15, 2011.
  8. 1 2 Hassitt, Anthony; Ralston, Anthony (2014). Computer Programming and Computer Systems. ISBN   978-1483258416.
  9. Control Data 1604-A Computer Reference Manual (PDF) (245a rev 5/63 ed.). Minneapolis, Minnesota: Control Data Corporation. 1963. pp. 1–5.
  10. Fleming, George. "CDC 1604". nssdc.gsfc.nasa.gov. Retrieved 2017-03-05.
  11. JP Brzozowski (1983). "MASQUERADE: Searching the full text of abstracts using automatic indexing". Journal of Information Science. 6 (2–3): 67–73. doi:10.1177/016555158300600205. S2CID   61928952.
  12. "PLATO - computer-based education system".
  13. "CDC 160A Languages enabled" (PDF).
  14. "Sam Schmitt | Database of Digital Art". compArt daDA: the database Digital Art. Archived from the original on 2018-11-27. Retrieved 2021-08-31.
  15. Impagliazzo, John; Proydakov, ?Eduard (2011). Perspectives on Soviet and Russian Computing. ISBN   978-3642228162.
  16. "Control Data Corporation Collection - Historical Timeline". Charles Babbage Institute .
  17. 1 2 3 4 CDC 924 Reference Manual (PDF, Oct 62)
  18. 1 2 "Control Data 924 Computer Reference Manual" (PDF). October 1962.

Further reading

Photos