CDKAL1

Last updated
CDKAL1
Identifiers
Aliases CDKAL1 , CDK5 regulatory subunit associated protein 1 like 1
External IDs OMIM: 611259; MGI: 1921765; HomoloGene: 9830; GeneCards: CDKAL1; OMA:CDKAL1 - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_017774

NM_144536
NM_001308486

RefSeq (protein)

NP_060244

NP_001295415
NP_653119

Location (UCSC) Chr 6: 20.53 – 21.23 Mb Chr 13: 29.38 – 30.04 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

CDKAL1 (Cdk5 regulatory associated protein 1-like 1) is a gene in the methylthiotransferase family. The complete physiological function and implications of this have not been fully determined. CDKAL1 is known to code for CDK5, a regulatory subunit-associated protein 1. [5] This protein CDK5 regulatory subunit-associated protein 1 is found broadly across tissue types including neuronal tissues and pancreatic beta cells. [6] CDKAL1 is suspected to be involved in the CDK5/p35 pathway, in which p35 is the activator for CDK5 which regulates several neuronal functions. [7]

Contents

Structure and function

Structurally CDKAL1 contains two iron (Fe) sulfur (S) clusters, therefore its function can be reduced by inhibiting Fe-S cluster biosynthesis. [8] Enzymatically, CDKAL1 catalyzes methylthiolation of N6-threonylcarbamoyl adenosine 37 (t6A37) in cytosolic tRNA, which has been determined to stabilize anticodon-codon interactions during translation. [9] [10]

Clinical significance

In humans, CDKAL1 is indicated to be involved in type II diabetes. Mutations in CDKAL1 and TCF7L2 have been associated with low production of insulin. [11] Some studies indicate that CDKAL1 variants modify tRNA resulting in increased risks of type II diabetes as well as obesity. [12] Variation in CDKAL1 was also attributed to differences in energy regulation. Single nucleotide polymorphism analysis resulted in the discovery of the mechanism of glucose and insulin responses demonstrated in the figure. From this relationship, it has been hypothesized that the regulatory genes CDKAL1 and GIP (glucose-dependent insulinotropic polypeptide) are related to environmental selectivity and adaptive immunity. [13]

Schematic of CDKAL1 involvement with insulin and glucose regulation. CDKAL and GIP Variant Schematic.png
Schematic of CDKAL1 involvement with insulin and glucose regulation.

Genome-wide association studies have linked single nucleotide polymorphisms in an intron on chromosome 6 with susceptibility to type 2 diabetes`. [provided by RefSeq, May 2010]. [14]

Animal studies

In mice, CDKAL1 impairment reduces the mouse's ability to maintain glucose homeostasis and causes pancreatic islet hypertrophy, or pancreatic lesions. [15]

Related Research Articles

<span class="mw-page-title-main">Insulin</span> Peptide hormone

Insulin is a peptide hormone produced by beta cells of the pancreatic islets encoded in humans by the insulin (INS) gene. It is the main anabolic hormone of the body. It regulates the metabolism of carbohydrates, fats, and protein by promoting the absorption of glucose from the blood into cells of the liver, fat, and skeletal muscles. In these tissues the absorbed glucose is converted into either glycogen, via glycogenesis, or fats (triglycerides), via lipogenesis; in the liver, glucose is converted into both. Glucose production and secretion by the liver are strongly inhibited by high concentrations of insulin in the blood. Circulating insulin also affects the synthesis of proteins in a wide variety of tissues. It is thus an anabolic hormone, promoting the conversion of small molecules in the blood into large molecules in the cells. Low insulin in the blood has the opposite effect, promoting widespread catabolism, especially of reserve body fat.

<span class="mw-page-title-main">Amylin</span> Peptide hormone that plays a role in glycemic regulation

Amylin, or islet amyloid polypeptide (IAPP), is a 37-residue peptide hormone. It is co-secreted with insulin from the pancreatic β-cells in the ratio of approximately 100:1 (insulin:amylin). Amylin plays a role in glycemic regulation by slowing gastric emptying and promoting satiety, thereby preventing post-prandial spikes in blood glucose levels.

<span class="mw-page-title-main">Pyruvate carboxylase</span> Enzyme

Pyruvate carboxylase (PC) encoded by the gene PC is an enzyme of the ligase class that catalyzes the physiologically irreversible carboxylation of pyruvate to form oxaloacetate (OAA).

<span class="mw-page-title-main">Zinc transporter 8</span> Protein found in humans

Zinc transporter 8 (ZNT8) is a protein that in humans is encoded by the SLC30A8 gene. ZNT8 is a zinc transporter related to insulin secretion in humans. In particular, ZNT8 is critical for the accumulation of zinc into beta cell secretory granules and the maintenance of stored insulin as tightly packaged hexamers. Certain alleles of the SLC30A8 gene may increase the risk for developing type 2 diabetes, but a loss-of-function mutation appears to greatly reduce the risk of diabetes.

In molecular biology, the sulfonylurea receptors (SUR) are membrane proteins which are the molecular targets of the sulfonylurea class of antidiabetic drugs whose mechanism of action is to promote insulin release from pancreatic beta cells. More specifically, SUR proteins are subunits of the inward-rectifier potassium ion channels Kir6.x. The association of four Kir6.x and four SUR subunits form an ion conducting channel commonly referred to as the KATP channel.

K<sub>ir</sub>6.2 Protein-coding gene in the species Homo sapiens

Kir6.2 is a major subunit of the ATP-sensitive K+ channel, a lipid-gated inward-rectifier potassium ion channel. The gene encoding the channel is called KCNJ11 and mutations in this gene are associated with congenital hyperinsulinism.

<span class="mw-page-title-main">CAPN10</span> Protein-coding gene in humans

Calpain-10 is a protein that in humans is encoded by the CAPN10 gene.

<span class="mw-page-title-main">PDX1</span> A protein involved in the pancreas and duodenum differentiation

PDX1, also known as insulin promoter factor 1, is a transcription factor in the ParaHox gene cluster. In vertebrates, Pdx1 is necessary for pancreatic development, including β-cell maturation, and duodenal differentiation. In humans this protein is encoded by the PDX1 gene, which was formerly known as IPF1. The gene was originally identified in the clawed frog Xenopus laevis and is present widely across the evolutionary diversity of bilaterian animals, although it has been lost in evolution in arthropods and nematodes. Despite the gene name being Pdx1, there is no Pdx2 gene in most animals; single-copy Pdx1 orthologs have been identified in all mammals. Coelacanth and cartilaginous fish are, so far, the only vertebrates shown to have two Pdx genes, Pdx1 and Pdx2.

<span class="mw-page-title-main">EIF2S1</span> Protein-coding gene in the species Homo sapiens

Eukaryotic translation initiation factor 2 subunit 1 (eIF2α) is a protein that in humans is encoded by the EIF2S1 gene.

<span class="mw-page-title-main">CDK5R1</span> Protein-coding gene in humans

Cyclin-dependent kinase 5 activator 1 is an enzyme that in humans is encoded by the CDK5R1 gene.

<span class="mw-page-title-main">PPP1R3A</span> Protein-coding gene in the species Homo sapiens

Protein phosphatase 1 regulatory subunit 3A is an enzyme that in humans is encoded by the PPP1R3A gene.

<span class="mw-page-title-main">CDK5RAP3</span> Protein-coding gene in humans

CDK5 regulatory subunit-associated protein 3 is a protein that in humans is encoded by the CDK5RAP3 gene.

<span class="mw-page-title-main">CDK5RAP2</span> Protein with roles in formation and stability of microtubules

CDK5 regulatory subunit-associated protein 2 is a protein that in humans is encoded by the CDK5RAP2 gene. It has necessary roles in the formation and stability of microtubules from the centrosome and has been found to be linked to human brain size variation in males. Multiple transcript variants exist for this gene, but the full-length nature of only two has been determined.

<span class="mw-page-title-main">CDK5RAP1</span> Protein-coding gene in humans

CDK5 regulatory subunit-associated protein 1 is a protein that in humans is encoded by the CDK5RAP1 gene.

<span class="mw-page-title-main">EIF3D</span> Protein-coding gene in the species Homo sapiens

Eukaryotic translation initiation factor 3 subunit D (eIF3d) is a protein that in humans is encoded by the EIF3D gene.

<span class="mw-page-title-main">Carbohydrate-responsive element-binding protein</span> Protein found in humans

Carbohydrate-responsive element-binding protein (ChREBP) also known as MLX-interacting protein-like (MLXIPL) is a protein that in humans is encoded by the MLXIPL gene. The protein name derives from the protein's interaction with carbohydrate response element sequences of DNA.

<span class="mw-page-title-main">CALCOCO2</span> Protein-coding gene in humans

Calcium-binding and coiled-coil domain-containing protein 2 is a protein that in humans is encoded by the CALCOCO2 gene.

<span class="mw-page-title-main">Cyclin-dependent kinase 5</span> Protein-coding gene in the species Homo sapiens

Cyclin-dependent kinase 5 is a protein, and more specifically an enzyme, that is encoded by the Cdk5 gene. It was discovered 15 years ago, and it is saliently expressed in post-mitotic central nervous system neurons (CNS).

Most cases of type 2 diabetes involved many genes contributing small amount to the overall condition. As of 2011 more than 36 genes have been found that contribute to the risk of type 2 diabetes. All of these genes together still only account for 10% of the total genetic component of the disease.

In recent years it has become apparent that the environment and underlying mechanisms affect gene expression and the genome outside of the central dogma of biology. It has been found that many epigenetic mechanisms are involved in the regulation and expression of genes such as DNA methylation and chromatin remodeling. These epigenetic mechanisms are believed to be a contributing factor to pathological diseases such as type 2 diabetes. An understanding of the epigenome of diabetes patients may help to elucidate otherwise hidden causes of this disease.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000145996 Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000006191 Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Ching YP, Pang AS, Lam WH, Qi RZ, Wang JH (May 2002). "Identification of a neuronal Cdk5 activator-binding protein as Cdk5 inhibitor". The Journal of Biological Chemistry. 277 (18): 15237–40. doi: 10.1074/jbc.C200032200 . PMID   11882646.
  6. Wei FY, Nagashima K, Ohshima T, Saheki Y, Lu YF, Matsushita M, et al. (October 2005). "Cdk5-dependent regulation of glucose-stimulated insulin secretion". Nature Medicine. 11 (10): 1104–8. doi:10.1038/nm1299. PMID   16155576. S2CID   23702471.
  7. Takasugi T, Minegishi S, Asada A, Saito T, Kawahara H, Hisanaga S (February 2016). "Two Degradation Pathways of the p35 Cdk5 (Cyclin-dependent Kinase) Activation Subunit, Dependent and Independent of Ubiquitination". The Journal of Biological Chemistry. 291 (9): 4649–57. doi: 10.1074/jbc.M115.692871 . PMC   4813488 . PMID   26631721.
  8. Santos MC, Anderson CP, Neschen S, Zumbrennen-Bullough KB, Romney SJ, Kahle-Stephan M, et al. (January 2020). "Irp2 regulates insulin production through iron-mediated Cdkal1-catalyzed tRNA modification". Nature Communications. 11 (1): 296. Bibcode:2020NatCo..11..296S. doi:10.1038/s41467-019-14004-5. PMC   6962211 . PMID   31941883.
  9. Santos MC, Anderson CP, Neschen S, Zumbrennen-Bullough KB, Romney SJ, Kahle-Stephan M, et al. (January 2020). "Irp2 regulates insulin production through iron-mediated Cdkal1-catalyzed tRNA modification". Nature Communications. 11 (1): 296. Bibcode:2020NatCo..11..296S. doi: 10.1038/s41467-019-14004-5 . PMC   6962211 . PMID   31941883.
  10. Harris KA, Bobay BG, Sarachan KL, Sims AF, Bilbille Y, Deutsch C, et al. (August 2015). "NMR-based Structural Analysis of Threonylcarbamoyl-AMP Synthase and Its Substrate Interactions". The Journal of Biological Chemistry. 290 (33): 20032–43. doi: 10.1074/jbc.M114.631242 . PMC   4536411 . PMID   26060251.
  11. Kirchhoff K, Machicao F, Haupt A, Schäfer SA, Tschritter O, Staiger H, et al. (April 2008). "Polymorphisms in the TCF7L2, CDKAL1 and SLC30A8 genes are associated with impaired proinsulin conversion". Diabetologia. 51 (4): 597–601. doi: 10.1007/s00125-008-0926-y . PMID   18264689.
  12. Palmer CJ, Bruckner RJ, Paulo JA, Kazak L, Long JZ, Mina AI, et al. (October 2017). "Cdkal1, a type 2 diabetes susceptibility gene, regulates mitochondrial function in adipose tissue". Molecular Metabolism. 6 (10): 1212–1225. doi:10.1016/j.molmet.2017.07.013. PMC   5641635 . PMID   29031721.
  13. 1 2 Chang CL, Cai JJ, Huang SY, Cheng PJ, Chueh HY, Hsu SY (2014-09-15). "Adaptive human CDKAL1 variants underlie hormonal response variations at the enteroinsular axis". PLOS ONE. 9 (9): e105410. Bibcode:2014PLoSO...9j5410C. doi: 10.1371/journal.pone.0105410 . PMC   4164438 . PMID   25222615.
  14. "Entrez Gene: CDK5 regulatory subunit associated protein 1-like 1" . Retrieved 2012-03-12.
  15. Wei FY, Suzuki T, Watanabe S, Kimura S, Kaitsuka T, Fujimura A, et al. (September 2011). "Deficit of tRNA(Lys) modification by Cdkal1 causes the development of type 2 diabetes in mice". The Journal of Clinical Investigation. 121 (9): 3598–608. doi:10.1172/JCI58056. PMC   3163968 . PMID   21841312.

Further reading