Casaba-Howitzer

Last updated
A Casaba-Howitzer weapon would be almost identical to this nuclear pulse propulsion unit. The explosive charge ablatively vaporizes the disk at the top, propelling the resulting plasma towards the target. Orion pulse unit.png
A Casaba-Howitzer weapon would be almost identical to this nuclear pulse propulsion unit. The explosive charge ablatively vaporizes the disk at the top, propelling the resulting plasma towards the target.

Project Casaba-Howitzer was a 1960s-era study into the use of nuclear weapons as the drivers for intense beams of plasma for use in space warfare. The basic concept grew out of work on the Project Orion spaceship concept, which studied nuclear shaped charges.

Contents

Very little information about Casaba-Howitzer is known publicly, limited primarily to mentions in defense spending documents during the mid-1960s (as part of the larger Project Defender), and once again in the mid-1980s when the concepts were revived as part of the Strategic Defense Initiative.

Description

Project Orion

The design for Project Orion originally used small hydrogen bombs whose explosion ejecta was captured on a pusher plate, a large metal plate mounted on shock absorbers. The explosion of the bomb was spherical and it was only the portion that struck the plate that created thrust. Moving the plate closer to the bomb increased the subtended angle that was captured, and thus efficiency, but at the cost of greatly increasing mechanical stress and added pusher plate weight. Baseline designs captured perhaps 10% of the energy of the bomb, a large waste. This led to considerable attention to this problem, and eventually a custom atomic bomb design for this purpose. [1]

A conventional hydrogen bomb includes two stages; the primary is an atomic bomb normally based on plutonium, while the secondary is a mixture of fusion fuel and various boosters. The primary releases an intense burst of X-rays that heat channel filler materials (believed to be similar to styrofoam) surrounding the secondary. The heat and pressure of the x-rays and their interactions causes the secondary to implode, compressing and heating the assembly to the conditions needed for nuclear fusion to occur. [2] [3]

For the Project Orion redesign, the team removed the secondary and replaced the channel filler with beryllium oxide, which is more opaque to x-rays. On the far side of the channel filler, they placed a plate of tungsten. When the primary is triggered, the beryllium oxide heats up to millions of degrees, passing this heat into the back of the tungsten plate. The tungsten is vaporized and sent flying off the end of the bomb as a plasma in a fan about 22.5 degrees wide. [4] This plasma is captured by the pusher plate for thrust, capturing perhaps 85% of the total momentum. [5] These propulsion modules were, in effect, nuclear shaped charges. [1]

Weapon use

The idea behind weaponizing the Orion modules is credited to Morris "Moe" Scharff, who moved to General Atomics from Lawrence Livermore National Laboratory. The name comes from the casaba melon, a variety of honeydew, because the lab was "on a melon kick that year," naming various projects after melons and having already used up all the good ones. [6] Development for weapon use is straightforward; for Casaba the tungsten was replaced with a lightweight material that would provide higher jet velocity, while at the same time thinning the plate to reduce the dispersion angle. This would produce a narrow, high-velocity jet. A wide variety of different jet types could be produced with different materials. [7]

In general terms, the Casaba-Howitzer concepts are somewhat similar to X-ray lasers studied under Project Excalibur during the 1980s. These replaced the pusher plate material with metal rods; when optically pumped by the atomic bomb's X-rays, the rods would produce collimated beams of X-ray radiation in the same fashion that a ruby laser produces red light when pumped by a flashtube. Testing in the 1980s demonstrated the efficiency was far too low to be useful and further work was dropped.

ARPA funding for Casaba-Howitzer continued for a time after the original Orion project at General Atomics ended, but when it shut down a number of the original team members left the company for other work. [8] Notable among these was Scharff, who had developed most of the ablation theory, who left to form S-Cubed. [9] The concept got a second lease on life during the Strategic Defense Initiative in the 1980s, but unclassified details are lacking. [10]

Related Research Articles

<span class="mw-page-title-main">Little Boy</span> Atomic bomb dropped on Hiroshima

Little Boy was a type of atomic bomb created by the United States as part of the Manhattan Project during World War II. The name is also often used to describe the specific bomb (L-11) used in the bombing of the Japanese city of Hiroshima by the Boeing B-29 Superfortress Enola Gay on 6 August 1945, making it the first nuclear weapon used in warfare, and the second nuclear explosion in history, after the Trinity nuclear test. It exploded with an energy of approximately 15 kilotons of TNT (63 TJ) and had an explosion radius of approximately 1.3 kilometres (0.81 mi) which caused widespread death across the city. It was a gun-type fission weapon which used uranium that had been enriched in the isotope uranium-235 to power its explosive reaction.

Isotope separation is the process of concentrating specific isotopes of a chemical element by removing other isotopes. The use of the nuclides produced is varied. The largest variety is used in research. By tonnage, separating natural uranium into enriched uranium and depleted uranium is the largest application. In the following text, mainly uranium enrichment is considered. This process is crucial in the manufacture of uranium fuel for nuclear power plants and is also required for the creation of uranium-based nuclear weapons. Plutonium-based weapons use plutonium produced in a nuclear reactor, which must be operated in such a way as to produce plutonium already of suitable isotopic mix or grade.

<span class="mw-page-title-main">Inertial confinement fusion</span> Branch of fusion energy research

Inertial confinement fusion (ICF) is a fusion energy process that initiates nuclear fusion reactions by compressing and heating targets filled with fuel. The targets are small pellets, typically containing deuterium (2H) and tritium (3H).

<span class="mw-page-title-main">Nuclear pulse propulsion</span> Hypothetical spacecraft propulsion through continuous nuclear explosions for thrust

Nuclear pulse propulsion or external pulsed plasma propulsion is a hypothetical method of spacecraft propulsion that uses nuclear explosions for thrust. It originated as Project Orion with support from DARPA, after a suggestion by Stanislaw Ulam in 1947. Newer designs using inertial confinement fusion have been the baseline for most later designs, including Project Daedalus and Project Longshot.

<span class="mw-page-title-main">Ted Taylor (physicist)</span> American theoretical nuclear physicist

Theodore Brewster "Ted" Taylor was an American theoretical physicist, specifically concerning nuclear energy. His higher education included a PhD from Cornell University in theoretical physics. His most noteworthy contributions to the field of nuclear weaponry were his small bomb developments at the Los Alamos Laboratory in New Mexico. Although not widely known to the general public, Taylor is credited with numerous landmarks in fission nuclear weaponry development, including having designed and developed the smallest, most powerful, and most efficient fission weapons ever tested by the US. Though not considered a brilliant physicist from a calculative viewpoint, his vision and creativity allowed him to thrive in the field. The later part of Taylor's career was focused on nuclear energy instead of weaponry, and included his work on Project Orion, nuclear reactor developments, and anti-nuclear proliferation.

<span class="mw-page-title-main">Nuclear weapon design</span> Process by which nuclear WMDs are designed and produced

Nuclear weapons design are physical, chemical, and engineering arrangements that cause the physics package of a nuclear weapon to detonate. There are three existing basic design types:

  1. Pure fission weapons are the simplest, least technically demanding, were the first nuclear weapons built, and so far the only type ever used in warfare, by the United States on Japan in World War II.
  2. Boosted fission weapons increase yield beyond that of the implosion design, by using small quantities of fusion fuel to enhance the fission chain reaction. Boosting can more than double the weapon's fission energy yield.
  3. Staged thermonuclear weapons are arrangements of two or more "stages", most usually two. The first stage is typically a boosted fission weapon. Its detonation causes it to shine intensely with X-rays, which illuminate and implode the second stage filled with fusion fuel. This initiates a sequence of events which results in a thermonuclear, or fusion, burn. This process affords potential yields up to hundreds of times those of fission weapons.
<span class="mw-page-title-main">Neutron source</span> Device that emits neutrons

A neutron source is any device that emits neutrons, irrespective of the mechanism used to produce the neutrons. Neutron sources are used in physics, engineering, medicine, nuclear weapons, petroleum exploration, biology, chemistry, and nuclear power. Neutron source variables include the energy of the neutrons emitted by the source, the rate of neutrons emitted by the source, the size of the source, the cost of owning and maintaining the source, and government regulations related to the source.

<span class="mw-page-title-main">Neutron moderator</span> Substance that slows down particles with no electric charge

In nuclear engineering, a neutron moderator is a medium that reduces the speed of fast neutrons, ideally without capturing any, leaving them as thermal neutrons with only minimal (thermal) kinetic energy. These thermal neutrons are immensely more susceptible than fast neutrons to propagate a nuclear chain reaction of uranium-235 or other fissile isotope by colliding with their atomic nucleus.

<span class="mw-page-title-main">Project Orion (nuclear propulsion)</span> Discontinued US research program on the viability of nuclear pulse propulsion

Project Orion was a study conducted in the 1950s and 1960s by the United States Air Force, DARPA, and NASA into the viability of a nuclear pulse spaceship that would be directly propelled by a series of atomic explosions behind the craft. Early versions of the vehicle were proposed to take off from the ground; later versions were presented for use only in space. The design effort took place at General Atomics in San Diego, and supporters included Wernher von Braun, who issued a white paper advocating the idea. Non-nuclear tests were conducted with models, but the project was eventually abandoned for several reasons, including the 1963 Partial Test Ban Treaty, which banned nuclear explosions in space, amid concerns over nuclear fallout.

<span class="mw-page-title-main">Castle Bravo</span> 1954 U.S. thermonuclear weapon test in the Marshall Islands

Castle Bravo was the first in a series of high-yield thermonuclear weapon design tests conducted by the United States at Bikini Atoll, Marshall Islands, as part of Operation Castle. Detonated on 1 March 1954, the device remains the most powerful nuclear device ever detonated by the United States and the first lithium deuteride-fueled thermonuclear weapon tested using the Teller-Ulam design. Castle Bravo's yield was 15 megatons of TNT [Mt] (63 PJ), 2.5 times the predicted 6 Mt (25 PJ), due to unforeseen additional reactions involving lithium-7, which led to radioactive contamination in the surrounding area.

RDS-6s was the first Soviet attempted test of a thermonuclear weapon that occurred on August 12, 1953, that detonated with an energy equivalent to 400 kilotons of TNT.

RDS-37 was the Soviet Union's first two-stage hydrogen bomb, first tested on 22 November 1955. The weapon had a nominal yield of approximately 3 megatons. It was scaled down to 1.6 megatons for the live test.

<span class="mw-page-title-main">Thermonuclear weapon</span> 2-stage nuclear weapon

A thermonuclear weapon, fusion weapon or hydrogen bomb (H bomb) is a second-generation nuclear weapon design. Its greater sophistication affords it vastly greater destructive power than first-generation nuclear bombs, a more compact size, a lower mass, or a combination of these benefits. Characteristics of nuclear fusion reactions make possible the use of non-fissile depleted uranium as the weapon's main fuel, thus allowing more efficient use of scarce fissile material such as uranium-235 or plutonium-239. The first full-scale thermonuclear test was carried out by the United States in 1952, and the concept has since been employed by most of the world's nuclear powers in the design of their weapons.

<span class="mw-page-title-main">Samuel King Allison</span> American physicist and nuclear scientist

Samuel King Allison was an American physicist, most notable for his role in the Manhattan Project, for which he was awarded the Medal for Merit. A professor who studied X-rays, he was director of the Metallurgical Laboratory from 1943 until 1944, and later worked at the Los Alamos Laboratory — where he "rode herd" on the final stages of the project as part of the "Cowpuncher Committee", and read the countdown for the detonation of the Trinity nuclear test. After the war, he returned to the University of Chicago to direct the Institute for Nuclear Studies and was involved in the "scientists' movement", lobbying for civilian control of nuclear weapons.

Mini-Mag Orion (MMO), or Miniature Magnetic Orion, is a proposed type of spacecraft propulsion based on the Project Orion nuclear propulsion system. The Mini-Mag Orion system achieves propulsion by compressing fissile material in a magnetic field, a Z-pinch, until fission occurs. This fission reaction propels the craft. MMO should be able to propel 100 tons to Mars within 3 months or to Jupiter in about one year.

<span class="mw-page-title-main">Plasma-facing material</span>

In nuclear fusion power research, the plasma-facing material (PFM) is any material used to construct the plasma-facing components (PFC), those components exposed to the plasma within which nuclear fusion occurs, and particularly the material used for the lining the first wall or divertor region of the reactor vessel.

Brian Boru Dunne II was Project Orion's chief scientist. Dunne worked on explosive model tests in Point Loma, San Diego alongside Jerry Astl and Morris Scharff. He continued to work for General Atomics and later started his own firm called Ship Systems.

Jaromír Astl, better known as Jerry Astl, was a Czech aeronautical engineer and explosive engineer who helped design the American Project Orion nuclear propulsion spacecraft in the 1950s and 1960s.

Nuclear shaped charges refers to nuclear weapons that focus the energy of their explosion into certain directions, as opposed to a spherical explosion. Edward Teller referred to such concepts as third-generation weapons, the first generation being the atom bomb and the second the H-bomb.

In a nuclear weapon, a tamper is an optional layer of dense material surrounding the fissile material. It is used in nuclear weapon design to reduce the critical mass and to delay the expansion of the reacting material through its inertia, which delays the thermal expansion of the fissioning fuel mass, keeping it supercritical longer. Often the same layer serves both as tamper and as neutron reflector. The weapon disintegrates as the reaction proceeds, and this stops the reaction, so the use of a tamper makes for a longer-lasting, more energetic and more efficient explosion. The yield can be further enhanced using a fissionable tamper.

References

Citations

  1. 1 2 Dyson 2002, pp. 110–114.
  2. Chan, Melissa (22 September 2017). "What Is the Difference Between a Hydrogen Bomb and an Atomic Bomb?". Time.
  3. Sublette, Carey. "Elements of Thermonuclear Weapon Design". The Nuclear Weapon Archive.
  4. Dyson 2002, p. 136.
  5. Dyson 2002, p. 221.
  6. Dyson 2002, p. 112.
  7. Dyson 2002, pp. 112–114.
  8. Dyson 2002, p. 279.
  9. Scharff, Gillian (18 January 2018). "Morris Fraenkel Scharff". Physics Today. doi:10.1063/PT.6.4o.20180118a.
  10. Foreign 1988.

Bibliography

Further reading