Cashmeran

Last updated
Cashmeran
Musk indanone.svg
Names
IUPAC name
(RS)-1,1,2,3,3-Pentamethyl-1,2,3,5,6,7-hexahydro-4H-inden-4-one
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.046.940 OOjs UI icon edit-ltr-progressive.svg
PubChem CID
UNII
  • InChI=1S/C14H22O/c1-9-13(2,3)10-7-6-8-11(15)12(10)14(9,4)5/h9H,6-8H2,1-5H3
    Key: MIZGSAALSYARKU-UHFFFAOYSA-N
  • InChI=1/C14H22O/c1-9-13(2,3)10-7-6-8-11(15)12(10)14(9,4)5/h9H,6-8H2,1-5H3
    Key: MIZGSAALSYARKU-UHFFFAOYAK
  • CC1C(C2=C(C1(C)C)C(=O)CCC2)(C)C
Properties
C14H22O
Molar mass 206.329 g·mol−1
AppearanceWhite solid
Melting point 27 °C (81 °F; 300 K)
Boiling point 256 °C (493 °F; 529 K)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Cashmeran (trade name; also known as musk indanone or indomuscone; chemical name 6,7-dihydro-1,1,2,3,3-pentamethyl-4(5H)-indanone or DPMI) is a chemical compound used in fragrances.

Contents

Physical-chemical properties

Cashmeran is an alicyclic ketone with the molecular formula C14H22O and a molecular weight of 206 g/mol. At room temperature it occurs as a white solid but its melting point is 27 °C. Boiling point has been reported to be 256 °C, however in some tests decomposition of the material was noted at 220 °C. [1]

History

Cashmeran was discovered by International Flavors and Fragrances in the 1970s by John Hall. [2] Its invention came about researching inexpensive chemical transformations from ingredients from the pentamethyl indane and tetramethyl naphthalene structures. As a result, Cashmeran, an unsaturated ketone, was identified as an important new fragrance ingredient.

Odour

Although cashmeran has been described by some as a polycyclic musk, it is neither primarily a musk odour ingredient, nor does it belong to the polycyclic musk group as defined by the International Fragrance Association (IFRA). The IFRA definition defines a polycyclic musk as:

Although there are woody-musky notes to Cashmeran, its odour is complex [3] with notes that are: rich spicy, fruity, chypre, balsamic and vanilla, overall intended to convey the soft sensuous feeling of cashmere (hence the trade name Cashmeran). As such, cashmeran is used to impart its own characteristic odour, which is completely different from regular musk ingredients. This is further reflected by its typical use level of around 2% [4] compared to for instance the polycyclic musk HHCB (galaxolide) with use levels in fragrances up to 30%. Cashmeran also lacks the aromatic benzene ring structure, which is present throughout the polycyclic musks. Cashmeran should therefore not be categorized as a polycyclic musk.

Environmental data

Cashmeran has a bio concentration factor (BCF) of 156 and an octanol-water partition coefficient (Log Kow) of 4.2, which makes that this material not a very persistent, very bioaccumulative (vPvB), nor a persistent bioaccumulating toxic (PBT) substance. Short term aquatic toxicity for cashmeran is >1 mg/kg for all species (Daphnia, algae and fish). Cashmeran has an environmental hazard classification (R51/53 according to the EU DSD [5] or H411 according to the EU CLP [6] ). In this sense, Cashmeran's bio concentration and aquatic toxicity is even an order of magnitude more favourable than those substances considered as polycyclic musks, and therefore also does not meet those criteria for the materials considered to be included in that group. [7]

Environmental and human monitoring studies

Several monitoring studies [8] [9] [10] [11] [12] [13] [14] [15] [16] have been conducted in various environmental compartments and humans. In most studies, DPMI was not detected. Some studies have reported trace levels of DPMI, where the reported levels were below 1 ppm, and typically below 1 ppb. Considering the environmental fate studies, the likelihood of DPMI being present in environmental media is small, and if present, at extremely low levels (i.e. below ppm).

Human health

Cashmeran is a slight skin irritant and an eye irritant (R36/38 according to EU DSD, H315-319 according to EU CLP) and a weak sensitiser (R43/H317) with an EC3 of 33%. Cashmeran is not classified as toxic nor is it a CMR substance [17] [18] [19] [20]

Related Research Articles

Borax Boron compound, a salt of boric acid

Borax is a salt (ionic compound), a hydrated borate of sodium, with chemical formula Na2H20B4O17 often written Na2B4O7·10H2O. It is a colorless crystalline solid, that dissolves in water to make a basic solution. It is commonly available in powder or granular form, and has many industrial and household uses, including as a pesticide, as a metal soldering flux, as a component of glass, enamel, and pottery glazes, for tanning of skins and hides, for artificial aging of wood, as a preservative against wood fungus, and as a pharmaceutic alkalizer. In chemical laboratories, it is used as a buffering agent.

Perfume Mixture of fragrant substances to produce a pleasant smell

Perfume is a mixture of fragrant essential oils or aroma compounds (fragrances), fixatives and solvents, usually in liquid form, used to give the human body, animals, food, objects, and living-spaces an agreeable scent. The 1939 Nobel Laureate for Chemistry, Leopold Ružička stated in 1945 that "right from the earliest days of scientific chemistry up to the present time, perfumes have substantially contributed to the development of organic chemistry as regards methods, systematic classification, and theory."

Musk Class of aromatic substances used in perfumes

Musk is a class of aromatic substances commonly used as base notes in perfumery. They include glandular secretions from animals such as the musk deer, numerous plants emitting similar fragrances, and artificial substances with similar odors. Musk was a name originally given to a substance with a strong odor obtained from a gland of the musk deer. The substance has been used as a popular perfume fixative since ancient times and is one of the most expensive animal products in the world. The name originates from the Late Greek μόσχος 'moskhos', from Persian 'mushk', similar to Sanskrit मुष्क muṣka ("testicle"), derived from Proto-Indo-European noun múh₂s meaning "mouse". The deer gland was thought to resemble a scrotum. It is applied to various plants and animals of similar smell and has come to encompass a wide variety of aromatic substances with similar odors, despite their often differing chemical structures and molecular shapes.

Phenolphthalein pH indicator turning to pink – fuchsia color in basic solution

Phenolphthalein ( feh-NOL(F)-thə-leen) is a chemical compound with the formula C20H14O4 and is often written as "HIn", "HPh", "phph" or simply "Ph" in shorthand notation. Phenolphthalein is often used as an indicator in acid–base titrations. For this application, it turns colorless in acidic solutions and pink in basic solutions. It belongs to the class of dyes known as phthalein dyes.

Phthalate Any ester derived from phthalic acid

Phthalates, or phthalate esters, are esters of phthalic acid. They are mainly used as plasticizers, i.e., substances added to plastics to increase their flexibility, transparency, durability, and longevity. They are used primarily to soften polyvinyl chloride (PVC).

Benzo(<i>a</i>)pyrene Carcinogenic compound found in smoke and soot

Benzo[a]pyrene is a polycyclic aromatic hydrocarbon and the result of incomplete combustion of organic matter at temperatures between 300 °C (572 °F) and 600 °C (1,112 °F). The ubiquitous compound can be found in coal tar, tobacco smoke and many foods, especially grilled meats. The substance with the formula C20H12 is one of the benzopyrenes, formed by a benzene ring fused to pyrene. Its diol epoxide metabolites (more commonly known as BPDE) react with and bind to DNA, resulting in mutations and eventually cancer. It is listed as a Group 1 carcinogen by the IARC. In the 18th century a scrotal cancer of chimney sweepers, the chimney sweeps' carcinoma, was already known to be connected to soot.

Aroma compound Chemical compound that has a smell or odor

An aroma compound, also known as an odorant, aroma, fragrance or flavoring, is a chemical compound that has a smell or odor. For an individual chemical or class of chemical compounds to impart a smell or fragrance, it must be sufficiently volatile for transmission via the air to the olfactory system in the upper part of the nose. As examples, various fragrant fruits have diverse aroma compounds, particularly strawberries which are commercially cultivated to have appealing aromas, and contain several hundred aroma compounds.

Brominated flame retardants (BFRs) are organobromine compounds that have an inhibitory effect on combustion chemistry and tend to reduce the flammability of products containing them. The brominated variety of commercialized chemical flame retardants comprise approximately 19.7% of the market. They are effective in plastics and textile applications like electronics, clothes and furniture.

Mycoremediation Process of using fungi to degrade or sequester contaminants in the environment

Mycoremediation is a form of bioremediation in which fungi-based remediation methods are used to decontaminate the environment. Fungi have been proven to be a cheap, effective and environmentally sound way for removing a wide array of contaminants from damaged environments or wastewater. These contaminants include heavy metals, organic pollutants, textile dyes, leather tanning chemicals and wastewater, petroleum fuels, polycyclic aromatic hydrocarbons, pharmaceuticals and personal care products, pesticides and herbicides in land, fresh water, and marine environments.

Triton X-100 Chemical compound

Triton X-100 is a nonionic surfactant that has a hydrophilic polyethylene oxide chain and an aromatic hydrocarbon lipophilic or hydrophobic group. The hydrocarbon group is a 4-(1,1,3,3-tetramethylbutyl)-phenyl group. Triton X-100 is closely related to IGEPAL CA-630 or former Nonidet P-40, which might differ from it mainly in having slightly shorter ethylene oxide chains. Thus Triton X-100 is slightly more hydrophilic than Igepal CA-630; these two detergents may not be considered to be functionally interchangeable for most applications.

Benzotrichloride Chemical compound

Benzotrichloride (BTC), also known as α,α,α-trichlorotoluene, phenyl chloroform or (trichloromethyl)benzene, is an organic compound with the formula C6H5CCl3. Benzotrichloride is an unstable, colorless (to yellowish), viscous, chlorinated hydrocarbon with a penetrating odor. Benzotrichloride is used extensively as a chemical intermediate for products of various classes, i.e. dyes and antimicrobial agents.

Ecotoxicity

Ecotoxicity, the subject of study of the field of ecotoxicology, refers to the potential for biological, chemical or physical stressors to affect ecosystems. Such stressors might occur in the natural environment at densities, concentrations or levels high enough to disrupt the natural biochemistry, physiology, behaviour and interactions of the living organisms that comprise the ecosystem.

Dechlorane plus Polychlorinated flame retardant

Dechlorane plus is a polychlorinated flame retardant produced by Oxychem. Its log P is 11.27±0.94. It is produced by the Diels-Alder reaction of two equivalents of hexachlorocyclopentadiene with one equivalent of cyclooctadiene. The syn and anti isomer are formed in the approximate ratio of 1:3.

Hazard statements form part of the Globally Harmonized System of Classification and Labelling of Chemicals (GHS). They are intended to form a set of standardized phrases about the hazards of chemical substances and mixtures that can be translated into different languages. As such, they serve the same purpose as the well-known R-phrases, which they are intended to replace.

Musk xylene Chemical compound

Musk xylene is a synthetic musk fragrance which mimics natural musk. It has been used as a perfume fixative in a wide variety of consumer products, and is still used in some cosmetics and fragrances.

Synthetic musks are a class of synthetic aroma compounds to emulate the scent of deer musk and other animal musks. Synthetic musks have a clean, smooth and sweet scent lacking the fecal notes of animal musks. They are used as flavorings and fixatives in cosmetics, detergents, perfumes and foods, supplying the base note of many perfume formulas. Most musk fragrance used in perfumery today is synthetic.

Galaxolide Chemical compound

Galaxolide is a synthetic musk with a clean sweet musky floral woody odor used in fragrances. It is one of the musk components that perfume and cologne manufacturers use to add a musk odor to their products. Galaxolide was first synthesized in 1965, and used in the late 1960s in some fabric softeners and detergents. High concentrations were also incorporated in fine fragrances.

Undecanal, also known as undecyl aldehyde, is an organic compound with the chemical formula C10H21CHO. It is an eleven-carbon aldehyde. A colourless, oily liquid, undecanal is a component of perfumes. Although it occurs naturally in citrus oils, it is produced commercially by hydroformylation of decene.

Tetramethyl acetyloctahydronaphthalenes Chemical compound

Tetramethyl acetyloctahydronaphthalenes is a synthetic ketone fragrance also known as OTNE and by other commercial trade names such as: Iso E Super, Iso Gamma Super, Anthamber, Amber Fleur, Boisvelone, Iso Ambois, Amberlan, Iso Velvetone, Orbitone, Amberonne. It is a synthetic woody odorant and is used as a fragrance ingredient in perfumes, laundry products and cosmetics.

Dihydrolevoglucosenone Chemical compound

Dihydrolevoglucosenone (Cyrene) is a bicyclic, chiral, seven-membered heterocyclic cycloalkanone which is a waste derived and fully biodegradable aprotic dipolar solvent. It is a environmentally friendly alternative to dimethylformamide (DMF) and N-methyl-2-pyrrolidone (NMP).

References

  1. All data from the Cashmeran REACH dossier Archived September 11, 2014, at the Wayback Machine
  2. US Patent 3,773,836 Nov 20, 1973
  3. "What is Cashmeran - Definition of the Perfume Ingredient Cashmeran". Archived from the original on 2014-09-11. Retrieved 2014-09-11.
  4. Cashmeran in: "Archived copy" (PDF). Archived from the original (PDF) on 2014-09-11. Retrieved 2014-09-11.{{cite web}}: CS1 maint: archived copy as title (link)
  5. "The directive on dangerous substances - Environment - European Commission".
  6. "CLP Legislation - ECHA".
  7. All data from the Cashmeran REACH dossier http://apps.echa.europa.eu/registered/data/dossiers/DISS-dffb4072-e4bf-47ae-e044-00144f67d031/AGGR-bb75495d-97b9-4633-be1c-cf3c830d975b_DISS-dffb4072-e4bf-47ae-e044-00144f67d031.html#AGGR-bb75495d-97b9-4633-be1c-cf3c830d975b} Archived September 11, 2014, at the Wayback Machine
  8. Eschke H.-D. , Dibowski H.-J. and Traud J. Studies on the occurrence of polycyclic musk flavors in different environmental compartments. Second communication: Findings in surface waters, waste waters, and fish as well as in detergents and cosmetics. Umweltwiss. Schadst.-Forsch. Z. Umweltchem Okotox., 7(3), 131-138.
  9. Eschke H.-D. , Dibowski H.-J. and Traud J. Detection and quantitative analysis of musk fragrances by means of ion-trap GC/MS/MS in human fat and breast milk. Deutsche Lebensmittel-Rundschau, 91(12), 375-379.
  10. Zehringer M. and Herrmann A. Analysis of polychlorinated biphenyls, pyrethroid insecticides and fragrances in human milk using a laminar cup liner in the GC injector. European Food Research and Technology, 212(2), 247-251
  11. Hutter H.-P. , Wallner P. , Moshammer H. , Hartl W. , Sattelberger R. , Lorbeer G. and Kundi M. Blood concentrations of polycyclic musks in healthy young adults. Chemosphere, 59(4), 487-492
  12. Ricking M. , Schwarzbauer J. , Hellou J. , Svenson A. and Zitko V. Polycyclic aromatic musk compounds in sewage treatment plant effluents of Canada and Sweden--first results. Marine Pollution Bulletin, 46(4), 410-417
  13. Zhang S., DiFrancesco, A., Chiu, P., Allen, H. and Salvito, D. Removal mechanisms for fragrance materials in sludge-amended soils. American Chemical Society 228th National Meeting, Philadelphia, PA. 25 August 2004
  14. Heberer Th., Jurgensen S., Fromme H. Synthetic musks in theaquatic system of Berlin as an example for urban ecosystems. In: Rimkus GH (ed.), Synthetic Musk Fragrances in the Environment. The Handbook of Environmental Chemistry. Springer Verlag, Berlin, Germany, pp. 123-150
  15. Schlumpf, M., Kypke, K., Wittassek, M., Angerer, J., Mascher, H., Mascher, D., Vokt, C., Birchler, M., and Lichtensteiger, W. Exposure patterns of UV filters, fragrances, parabens, phthalates, organochlor pesticides, PBDEs, and PCBs in human milk: Correlation of UV filters with use of cosmetics. Chemosphere 81, 1171-1183
  16. Guo R., Lee I., Kim U., Oh J. Occurrence of synthetic musks in Korean sewage sludges. Science of the Total Environment 408, 1634-1639.
  17. http://apps.echa.europa.eu/registered/data/dossiers/DISS-dffb4072-e4bf-47ae-e044-00144f67d031/AGGR-bb75495d-97b9-4633-be1c-cf3c830d975b_DISS-dffb4072-e4bf-47ae-e044-00144f67d031.html#AGGR-bb75495d-97b9-4633-be1c-cf3c830d975b} Archived September 11, 2014, at the Wayback Machine
  18. Kevekordes S. , Mersch-Sundermann V. , Diez M. and Dunkelberg H. In vitro genotoxicity of polycyclic musk fragrances in the micronucleus test. Mutation Research, 395(2-3), 145-150.
  19. Kevekordes S. , Mersch-Sundermann V. , Diez M. , Bolten C. and Dunkelberg H. Genotoxicity of polycyclic musk fragrances in the sister-chromatid exchange test. Anticancer Research, 18(1A), 449-452.
  20. Mersch-Sundermann V. , Kevekordes S. and Jenter C. Lack of mutagenicity of polycyclic musk fragrances in Salmonella typhimurium. Toxicology in Vitro, 12(4), 389-393.