Casper Hoogenraad | |
---|---|
Born | |
Nationality | Dutch |
Citizenship | The Netherlands |
Alma mater | |
Known for | Molecular Neuroscience |
Scientific career | |
Fields | Neuroscience |
Institutions | |
Doctoral advisor | Frank Grosveld, Chris De Zeeuw |
Other academic advisors | Morgan Sheng |
Website | https://www.gene.com/scientists/our-scientists/casper-hoogenraad |
Casper Hoogenraad is a Dutch Cell Biologist who specializes in molecular neuroscience. The focus of his research is the basic molecular and cellular mechanisms that regulate the development and function of the brain. As of January 2020, he serves as Vice President of Neuroscience at Genentech Research and Early Development.
Casper Hoogenraad was born in 1973 in Delft and grew up in Gouda, in The Netherlands. He received his B.S. in Biochemistry and M.S. in Molecular Biology from Utrecht University, and his doctorate in Cell Biology from the Erasmus University Rotterdam. [1] In 2002, Hoogenraad started his post-doctoral research at Massachusetts Institute of Technology in Cambridge, USA. In 2005, he returned to the Netherlands and joined the faculty of the Erasmus University Medical Center in Rotterdam as Associate Professor in the Department of Neuroscience. In 2011 he joined Utrecht University as full Professor of Molecular Neuroscience, and served as Chair of Cell Biology, Neurobiology and Biophysics for 10 years. [2] He is Adjunct Professor in Department of Biochemistry and Biophysics at University of California, San Francisco (UCSF). [3]
During his career, he discovered molecular mechanisms and cell biological processes that control cytoskeleton remodeling and cargo trafficking during the development and function of the brain. Hoogenraad published over 250 research articles, reviews and books, focused on synaptic function [4] [5] [6] [7] dendritic spine plasticity [8] [9] [10] [11] neuronal polarity [12] [13] [14] [15] organelle sorting mechanisms [16] [17] [18] [19] [20] the axon initial segment [21] [22] [23] [24] [25] cytoskeleton remodeling [26] [27] [28] [29] microtubule dynamics [30] [31] [32] [33] [34] fundamental transport mechanisms [35] [36] [37] [38] [39] axon regeneration [40] [41] and neurodegeneration. [42] [43] [44] [45] See for full publication record - Pubmed, [46] Google Scholar, [47] ORCID [48]
Hoogenraad was recruited to Genentech, a member of the Roche Group, as Senior Fellow and head of Neuroscience. [49] As of January 2020, he is Vice President of Neuroscience at Genentech Research and Early Development. [50] In this role, he is Head of the Neuroscience Department, responsible for research and drug discovery activities in Neuroscience and oversees Genentech's Neuroscience disease pipeline programs. He is also responsible for Translational Neuroscience, Neuroscience Stem Cell group, Department of Translational Imaging, and Department of Molecular Biology.
He is an elected member of the European Molecular Biology Organization, [51] The Young Academy’ of the Royal Netherlands Academy of Sciences, [52] Young Academy of Europe [53] and the Editorial Board of Neuron [54] and The EMBO Journal. [55] In 2016 he became the 10th recipient of the IBRO-Kemali Prize, in the field of basic and clinical Neuroscience. [56] Some of his awards: NWO Talent stipendium, Human Frontiers Long-Term Fellowship, European Younng Investigators (EURYI) award, Dutch Innovational Research VIDI and VICI, European Research Council (ERC) - consolidator grant.
In 2013, his laboratory made an animation movie, named 'A Day in the Life of a Motor Protein', which has received >1 million views on YouTube. [57] During this short five-minute movie, we follow John, a motor protein, who has to transport a large package through the narrow streets in the city of Utrecht, illustrating the importance and challenges of intracellular transport.
An axon or nerve fiber is a long, slender projection of a nerve cell, or neuron, in vertebrates, that typically conducts electrical impulses known as action potentials away from the nerve cell body. The function of the axon is to transmit information to different neurons, muscles, and glands. In certain sensory neurons, such as those for touch and warmth, the axons are called afferent nerve fibers and the electrical impulse travels along these from the periphery to the cell body and from the cell body to the spinal cord along another branch of the same axon. Axon dysfunction can be the cause of many inherited and acquired neurological disorders that affect both the peripheral and central neurons. Nerve fibers are classed into three types – group A nerve fibers, group B nerve fibers, and group C nerve fibers. Groups A and B are myelinated, and group C are unmyelinated. These groups include both sensory fibers and motor fibers. Another classification groups only the sensory fibers as Type I, Type II, Type III, and Type IV.
Oligodendrocytes, also known as oligodendroglia, are a type of neuroglia whose main functions are to provide support and insulation to axons within the central nervous system (CNS) of jawed vertebrates. Their function is similar to that of Schwann cells, which perform the same task in the peripheral nervous system (PNS). Oligodendrocytes accomplish this by forming the myelin sheath around axons. Unlike Schwann cells, a single oligodendrocyte can extend its processes to cover around 50 axons, with each axon being wrapped in approximately 1 μm of myelin sheath. Furthermore, an oligodendrocyte can provide myelin segments for multiple adjacent axons.
In cellular neuroscience, the soma, perikaryon, neurocyton, or cell body is the bulbous, non-process portion of a neuron or other brain cell type, containing the cell nucleus. Although it is often used to refer to neurons, it can also refer to other cell types as well, including astrocytes, oligodendrocytes, and microglia. There are many different specialized types of neurons, and their sizes vary from as small as about 5 micrometres to over 10 millimetres for some of the smallest and largest neurons of invertebrates, respectively.
The tau proteins form a group of six highly soluble protein isoforms produced by alternative splicing from the gene MAPT. They have roles primarily in maintaining the stability of microtubules in axons and are abundant in the neurons of the central nervous system (CNS), where the cerebral cortex has the highest abundance. They are less common elsewhere but are also expressed at very low levels in CNS astrocytes and oligodendrocytes.
Oligodendrocyte progenitor cells (OPCs), also known as oligodendrocyte precursor cells, NG2-glia, O2A cells, or polydendrocytes, are a subtype of glia in the central nervous system named for their essential role as precursors to oligodendrocytes. They are typically identified in the human by co-expression of PDGFRA and CSPG4.
Axonal transport, also called axoplasmic transport or axoplasmic flow, is a cellular process responsible for movement of mitochondria, lipids, synaptic vesicles, proteins, and other organelles to and from a neuron's cell body, through the cytoplasm of its axon called the axoplasm. Since some axons are on the order of meters long, neurons cannot rely on diffusion to carry products of the nucleus and organelles to the ends of their axons. Axonal transport is also responsible for moving molecules destined for degradation from the axon back to the cell body, where they are broken down by lysosomes.
Intraflagellar transport (IFT) is a bidirectional motility along axoneme microtubules that is essential for the formation (ciliogenesis) and maintenance of most eukaryotic cilia and flagella. It is thought to be required to build all cilia that assemble within a membrane projection from the cell surface. Plasmodium falciparum cilia and the sperm flagella of Drosophila are examples of cilia that assemble in the cytoplasm and do not require IFT. The process of IFT involves movement of large protein complexes called IFT particles or trains from the cell body to the ciliary tip and followed by their return to the cell body. The outward or anterograde movement is powered by kinesin-2 while the inward or retrograde movement is powered by cytoplasmic dynein 2/1b. The IFT particles are composed of about 20 proteins organized in two subcomplexes called complex A and B.
Hippocalcin is a protein that in humans is encoded by the HPCA gene.
A nerve guidance conduit is an artificial means of guiding axonal regrowth to facilitate nerve regeneration and is one of several clinical treatments for nerve injuries. When direct suturing of the two stumps of a severed nerve cannot be accomplished without tension, the standard clinical treatment for peripheral nerve injuries is autologous nerve grafting. Due to the limited availability of donor tissue and functional recovery in autologous nerve grafting, neural tissue engineering research has focused on the development of bioartificial nerve guidance conduits as an alternative treatment, especially for large defects. Similar techniques are also being explored for nerve repair in the spinal cord but nerve regeneration in the central nervous system poses a greater challenge because its axons do not regenerate appreciably in their native environment.
CAP-Gly domain containing linker protein 1, also known as CLIP1, is a protein which in humans is encoded by the CLIP1 gene.
Bicaudal D cargo adaptor 2 is a protein that in humans is encoded by the BICD2 gene.
Rho GTPase-activating protein 4 is an enzyme that in humans is encoded by the ARHGAP4 gene. It has been shown to regulate cell motility and axonal outgrowth in vitro.
Cytoplasmic linker associated protein 2, also known as CLASP2, is a protein which in humans is encoded by the CLASP2 gene.
Microtubule-associated protein 6 (MAP6) or stable tubule-only polypeptide is a protein that in humans is encoded by the MAP6 gene.
A HEAT repeat is a protein tandem repeat structural motif composed of two alpha helices linked by a short loop. HEAT repeats can form alpha solenoids, a type of solenoid protein domain found in a number of cytoplasmic proteins. The name "HEAT" is an acronym for four proteins in which this repeat structure is found: Huntingtin, elongation factor 3 (EF3), protein phosphatase 2A (PP2A), and the yeast kinase TOR1. HEAT repeats form extended superhelical structures which are often involved in intracellular transport; they are structurally related to armadillo repeats. The nuclear transport protein importin beta contains 19 HEAT repeats.
Kinesin-like protein KIF1A, also known as axonal transporter of synaptic vesicles or microtubule-based motor KIF1A, is a protein that in humans is encoded by the KIF1A gene.
Viral neuronal tracing is the use of a virus to trace neural pathways, providing a self-replicating tracer. Viruses have the advantage of self-replication over molecular tracers but can also spread too quickly and cause degradation of neural tissue. Viruses that can infect the nervous system, called neurotropic viruses, spread through spatially close assemblies of neurons through synapses, allowing for their use in studying functionally connected neural networks.
Kinesin family member 15 is a protein that in humans is encoded by the KIF15 gene.
Neurotubules are microtubules found in neurons in nervous tissues. Along with neurofilaments and microfilaments, they form the cytoskeleton of neurons. Neurotubules are undivided hollow cylinders that are made up of tubulin protein polymers and arrays parallel to the plasma membrane in neurons. Neurotubules have an outer diameter of about 23 nm and an inner diameter, also known as the central core, of about 12 nm. The wall of the neurotubules is about 5 nm in width. There is a non-opaque clear zone surrounding the neurotubule and it is about 40 nm in diameter. Like microtubules, neurotubules are greatly dynamic and the length of them can be adjusted by polymerization and depolymerization of tubulin.
Li Gan is a neuroscientist and professor at Weill Cornell Medical College. She is known for her discovery of pathogenic tau protein acetylation in tauopathies and mechanisms of microglia dysfunction in neurodegeneration.
{{cite book}}
: |newspaper=
ignored (help){{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link)