Casper Hoogenraad

Last updated
Casper Hoogenraad
Born (1973-01-31) January 31, 1973 (age 51)
Nationality Dutch
Citizenship The Netherlands
Alma mater
Known for Molecular Neuroscience
Scientific career
Fields Neuroscience
Institutions
Doctoral advisor Frank Grosveld, Chris De Zeeuw
Other academic advisors Morgan Sheng
Website https://www.gene.com/scientists/our-scientists/casper-hoogenraad

Casper Hoogenraad is a Dutch Cell Biologist who specializes in molecular neuroscience. The focus of his research is the basic molecular and cellular mechanisms that regulate the development and function of the brain. As of January 2020, he serves as Vice President of Neuroscience at Genentech Research and Early Development.

Contents

Biography and academic career

Casper Hoogenraad was born in 1973 in Delft and grew up in Gouda, in The Netherlands. He received his B.S. in Biochemistry and M.S. in Molecular Biology from Utrecht University, and his doctorate in Cell Biology from the Erasmus University Rotterdam. [1] In 2002, Hoogenraad started his post-doctoral research at Massachusetts Institute of Technology in Cambridge, USA. In 2005, he returned to the Netherlands and joined the faculty of the Erasmus University Medical Center in Rotterdam as Associate Professor in the Department of Neuroscience. In 2011 he joined Utrecht University as full Professor of Molecular Neuroscience, and served as Chair of Cell Biology, Neurobiology and Biophysics for 10 years. [2] He is Adjunct Professor in Department of Biochemistry and Biophysics at University of California, San Francisco (UCSF). [3]

During his career, he discovered molecular mechanisms and cell biological processes that control cytoskeleton remodeling and cargo trafficking during the development and function of the brain. Hoogenraad published over 250 research articles, reviews and books, focused on synaptic function [4] [5] [6] [7] dendritic spine plasticity [8] [9] [10] [11] neuronal polarity [12] [13] [14] [15] organelle sorting mechanisms [16] [17] [18] [19] [20] the axon initial segment [21] [22] [23] [24] [25] cytoskeleton remodeling [26] [27] [28] [29] microtubule dynamics [30] [31] [32] [33] [34] fundamental transport mechanisms [35] [36] [37] [38] [39] axon regeneration [40] [41] and neurodegeneration. [42] [43] [44] [45] See for full publication record - Pubmed, [46] Google Scholar, [47] ORCID [48]

Industrial career

Hoogenraad was recruited to Genentech, a member of the Roche Group, as Senior Fellow and head of Neuroscience. [49] As of January 2020, he is Vice President of Neuroscience at Genentech Research and Early Development. [50] In this role, he is Head of the Neuroscience Department, responsible for research and drug discovery activities in Neuroscience and oversees Genentech's Neuroscience disease pipeline programs. He is also responsible for Translational Neuroscience, Neuroscience Stem Cell group, Department of Translational Imaging, and Department of Molecular Biology.

Honors and Awards

He is an elected member of the European Molecular Biology Organization, [51] The Young Academy’ of the Royal Netherlands Academy of Sciences, [52] Young Academy of Europe [53] and the Editorial Board of Neuron [54] and The EMBO Journal. [55] In 2016 he became the 10th recipient of the IBRO-Kemali Prize, in the field of basic and clinical Neuroscience. [56] Some of his awards: NWO Talent stipendium, Human Frontiers Long-Term Fellowship, European Younng Investigators (EURYI) award, Dutch Innovational Research VIDI and VICI, European Research Council (ERC) - consolidator grant.

Science outreach

In 2013, his laboratory made an animation movie, named 'A Day in the Life of a Motor Protein', which has received >1 million views on YouTube. [57] During this short five-minute movie, we follow John, a motor protein, who has to transport a large package through the narrow streets in the city of Utrecht, illustrating the importance and challenges of intracellular transport.

Related Research Articles

<span class="mw-page-title-main">Axon</span> Long projection on a neuron that conducts signals to other neurons

An axon or nerve fiber is a long, slender projection of a nerve cell, or neuron, in vertebrates, that typically conducts electrical impulses known as action potentials away from the nerve cell body. The function of the axon is to transmit information to different neurons, muscles, and glands. In certain sensory neurons, such as those for touch and warmth, the axons are called afferent nerve fibers and the electrical impulse travels along these from the periphery to the cell body and from the cell body to the spinal cord along another branch of the same axon. Axon dysfunction can be the cause of many inherited and acquired neurological disorders that affect both the peripheral and central neurons. Nerve fibers are classed into three types – group A nerve fibers, group B nerve fibers, and group C nerve fibers. Groups A and B are myelinated, and group C are unmyelinated. These groups include both sensory fibers and motor fibers. Another classification groups only the sensory fibers as Type I, Type II, Type III, and Type IV.

<span class="mw-page-title-main">Oligodendrocyte</span> Neural cell type

Oligodendrocytes, also known as oligodendroglia, are a type of neuroglia whose main functions are to provide support and insulation to axons within the central nervous system (CNS) of jawed vertebrates. Their function is similar to that of Schwann cells, which perform the same task in the peripheral nervous system (PNS). Oligodendrocytes accomplish this by forming the myelin sheath around axons. Unlike Schwann cells, a single oligodendrocyte can extend its processes to cover around 50 axons, with each axon being wrapped in approximately 1 μm of myelin sheath. Furthermore, an oligodendrocyte can provide myelin segments for multiple adjacent axons.

<span class="mw-page-title-main">Soma (biology)</span> Portion of a brain cell containing its nucleus

In cellular neuroscience, the soma, perikaryon, neurocyton, or cell body is the bulbous, non-process portion of a neuron or other brain cell type, containing the cell nucleus. Although it is often used to refer to neurons, it can also refer to other cell types as well, including astrocytes, oligodendrocytes, and microglia. There are many different specialized types of neurons, and their sizes vary from as small as about 5 micrometres to over 10 millimetres for some of the smallest and largest neurons of invertebrates, respectively.

<span class="mw-page-title-main">Tau protein</span> Group of six protein isoforms produced from the MAPT gene

The tau proteins form a group of six highly soluble protein isoforms produced by alternative splicing from the gene MAPT. They have roles primarily in maintaining the stability of microtubules in axons and are abundant in the neurons of the central nervous system (CNS), where the cerebral cortex has the highest abundance. They are less common elsewhere but are also expressed at very low levels in CNS astrocytes and oligodendrocytes.

Oligodendrocyte progenitor cells (OPCs), also known as oligodendrocyte precursor cells, NG2-glia, O2A cells, or polydendrocytes, are a subtype of glia in the central nervous system named for their essential role as precursors to oligodendrocytes. They are typically identified in the human by co-expression of PDGFRA and CSPG4.

<span class="mw-page-title-main">Axonal transport</span> Movement of organelles

Axonal transport, also called axoplasmic transport or axoplasmic flow, is a cellular process responsible for movement of mitochondria, lipids, synaptic vesicles, proteins, and other organelles to and from a neuron's cell body, through the cytoplasm of its axon called the axoplasm. Since some axons are on the order of meters long, neurons cannot rely on diffusion to carry products of the nucleus and organelles to the ends of their axons. Axonal transport is also responsible for moving molecules destined for degradation from the axon back to the cell body, where they are broken down by lysosomes.

<span class="mw-page-title-main">Intraflagellar transport</span> Cellular process

Intraflagellar transport (IFT) is a bidirectional motility along axoneme microtubules that is essential for the formation (ciliogenesis) and maintenance of most eukaryotic cilia and flagella. It is thought to be required to build all cilia that assemble within a membrane projection from the cell surface. Plasmodium falciparum cilia and the sperm flagella of Drosophila are examples of cilia that assemble in the cytoplasm and do not require IFT. The process of IFT involves movement of large protein complexes called IFT particles or trains from the cell body to the ciliary tip and followed by their return to the cell body. The outward or anterograde movement is powered by kinesin-2 while the inward or retrograde movement is powered by cytoplasmic dynein 2/1b. The IFT particles are composed of about 20 proteins organized in two subcomplexes called complex A and B.

<span class="mw-page-title-main">Hippocalcin</span> Protein-coding gene in the species Homo sapiens

Hippocalcin is a protein that in humans is encoded by the HPCA gene.

A nerve guidance conduit is an artificial means of guiding axonal regrowth to facilitate nerve regeneration and is one of several clinical treatments for nerve injuries. When direct suturing of the two stumps of a severed nerve cannot be accomplished without tension, the standard clinical treatment for peripheral nerve injuries is autologous nerve grafting. Due to the limited availability of donor tissue and functional recovery in autologous nerve grafting, neural tissue engineering research has focused on the development of bioartificial nerve guidance conduits as an alternative treatment, especially for large defects. Similar techniques are also being explored for nerve repair in the spinal cord but nerve regeneration in the central nervous system poses a greater challenge because its axons do not regenerate appreciably in their native environment.

<span class="mw-page-title-main">CLIP1</span> Protein-coding gene in humans

CAP-Gly domain containing linker protein 1, also known as CLIP1, is a protein which in humans is encoded by the CLIP1 gene.

<span class="mw-page-title-main">BICD2</span> Protein-coding gene in the species Homo sapiens

Bicaudal D cargo adaptor 2 is a protein that in humans is encoded by the BICD2 gene.

<span class="mw-page-title-main">ARHGAP4</span> Protein-coding gene in humans

Rho GTPase-activating protein 4 is an enzyme that in humans is encoded by the ARHGAP4 gene. It has been shown to regulate cell motility and axonal outgrowth in vitro.

<span class="mw-page-title-main">CLASP2</span> Protein-coding gene in the species Homo sapiens

Cytoplasmic linker associated protein 2, also known as CLASP2, is a protein which in humans is encoded by the CLASP2 gene.

<span class="mw-page-title-main">MAP6</span> Protein-coding gene in the species Homo sapiens

Microtubule-associated protein 6 (MAP6) or stable tubule-only polypeptide is a protein that in humans is encoded by the MAP6 gene.

<span class="mw-page-title-main">HEAT repeat</span> Protein tandem repeat

A HEAT repeat is a protein tandem repeat structural motif composed of two alpha helices linked by a short loop. HEAT repeats can form alpha solenoids, a type of solenoid protein domain found in a number of cytoplasmic proteins. The name "HEAT" is an acronym for four proteins in which this repeat structure is found: Huntingtin, elongation factor 3 (EF3), protein phosphatase 2A (PP2A), and the yeast kinase TOR1. HEAT repeats form extended superhelical structures which are often involved in intracellular transport; they are structurally related to armadillo repeats. The nuclear transport protein importin beta contains 19 HEAT repeats.

<span class="mw-page-title-main">KIF1A</span> Motor protein in humans

Kinesin-like protein KIF1A, also known as axonal transporter of synaptic vesicles or microtubule-based motor KIF1A, is a protein that in humans is encoded by the KIF1A gene.

Viral neuronal tracing is the use of a virus to trace neural pathways, providing a self-replicating tracer. Viruses have the advantage of self-replication over molecular tracers but can also spread too quickly and cause degradation of neural tissue. Viruses that can infect the nervous system, called neurotropic viruses, spread through spatially close assemblies of neurons through synapses, allowing for their use in studying functionally connected neural networks.

<span class="mw-page-title-main">KIF15</span> Protein-coding gene in the species Homo sapiens

Kinesin family member 15 is a protein that in humans is encoded by the KIF15 gene.

<span class="mw-page-title-main">Neurotubule</span>

Neurotubules are microtubules found in neurons in nervous tissues. Along with neurofilaments and microfilaments, they form the cytoskeleton of neurons. Neurotubules are undivided hollow cylinders that are made up of tubulin protein polymers and arrays parallel to the plasma membrane in neurons. Neurotubules have an outer diameter of about 23 nm and an inner diameter, also known as the central core, of about 12 nm. The wall of the neurotubules is about 5 nm in width. There is a non-opaque clear zone surrounding the neurotubule and it is about 40 nm in diameter. Like microtubules, neurotubules are greatly dynamic and the length of them can be adjusted by polymerization and depolymerization of tubulin.

Li Gan is a neuroscientist and professor at Weill Cornell Medical College. She is known for her discovery of pathogenic tau protein acetylation in tauopathies and mechanisms of microglia dysfunction in neurodegeneration.

References

  1. PhD thesis. 12 September 2001. ISBN   978-90-77017-07-4.{{cite book}}: |newspaper= ignored (help)
  2. "Utrecht lab". UU, Utrecht University. 20 December 2023.
  3. "UCSF lab".
  4. Sheng M, Hoogenraad CC (2007). "The postsynaptic architecture of excitatory synapses: a more quantitative view". Annu Rev Biochem. 76: 823–47. doi:10.1146/annurev.biochem.76.060805.160029. PMID   17243894.
  5. Hoogenraad CC, Milstein AD, Ethell IM, Henkemeyer M, Sheng M (2005). "GRIP1 controls dendrite morphogenesis by regulating EphB receptor trafficking". Nat Neurosci. 8 (7): 906–15. doi:10.1038/nn1487. PMID   15965473. S2CID   23686585.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  6. Hoogenraad CC, Popa I, Futai K, Martinez-Sanchez E, Wulf PS, van Vlijmen T; et al. (2010). "Neuron specific Rab4 effector GRASP-1 coordinates membrane specialization and maturation of recycling endosomes". PLOS Biol. 8 (1): e1000283. doi: 10.1371/journal.pbio.1000283 . PMC   2808209 . PMID   20098723.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  7. Lindhout FW, Cao Y, Kevenaar JT, Bodzęta A, Stucchi R, Boumpoutsari MM; et al. (2019). "VAP-SCRN1 interaction regulates dynamic endoplasmic reticulum remodeling and presynaptic function". EMBO J. 38 (20): e101345. doi:10.15252/embj.2018101345. PMC   6792018 . PMID   31441084.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  8. Jaworski J, Kapitein LC, Gouveia SM, Dortland BR, Wulf PS, Grigoriev I; et al. (2009). "Dynamic microtubules regulate dendritic spine morphology and synaptic plasticity". Neuron. 61 (1): 85–100. doi: 10.1016/j.neuron.2008.11.013 . PMID   19146815.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  9. Hotulainen P, Hoogenraad CC (2010). "Actin in dendritic spines: connecting dynamics to function". J Cell Biol. 189 (4): 619–29. doi:10.1083/jcb.201003008. PMC   2872912 . PMID   20457765.
  10. Esteves da Silva M, Adrian M, Schätzle P, Lipka J, Watanabe T, Cho S; et al. (2015). "Positioning of AMPA Receptor-Containing Endosomes Regulates Synapse Architecture". Cell Rep. 13 (5): 933–43. doi:10.1016/j.celrep.2015.09.062. PMID   26565907.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  11. Schätzle P, Esteves da Silva M, Tas RP, Katrukha EA, Hu HY, Wierenga CJ; et al. (2018). "Activity-Dependent Actin Remodeling at the Base of Dendritic Spines Promotes Microtubule Entry". Curr Biol. 28 (13): 2081–2093.e6. Bibcode:2018CBio...28E2081S. doi: 10.1016/j.cub.2018.05.004 . PMID   29910073.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  12. Kuijpers M, van de Willige D, Freal A, Chazeau A, Franker MA, Hofenk J; et al. (2016). "Dynein Regulator NDEL1 Controls Polarized Cargo Transport at the Axon Initial Segment". Neuron. 89 (3): 461–71. doi: 10.1016/j.neuron.2016.01.022 . PMID   26844830.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  13. Franker MA, Esteves da Silva M, Tas RP, Tortosa E, Cao Y, Frias CP; et al. (2016). "Three-Step Model for Polarized Sorting of KIF17 into Dendrites". Curr Biol. 26 (13): 1705–1712. Bibcode:2016CBio...26.1705F. doi: 10.1016/j.cub.2016.04.057 . PMID   27265394.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  14. Tortosa E, Adolfs Y, Fukata M, Pasterkamp RJ, Kapitein LC, Hoogenraad CC (2017). "Dynamic Palmitoylation Targets MAP6 to the Axon to Promote Microtubule Stabilization during Neuronal Polarization". Neuron. 94 (4): 809–825.e7. doi: 10.1016/j.neuron.2017.04.042 . PMID   28521134.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  15. Farías GG, Fréal A, Tortosa E, Stucchi R, Pan X, Portegies S; et al. (2019). "Feedback-Driven Mechanisms between Microtubules and the Endoplasmic Reticulum Instruct Neuronal Polarity". Neuron. 102 (1): 184–201.e8. doi: 10.1016/j.neuron.2019.01.030 . PMID   30772082.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  16. van Spronsen M, Mikhaylova M, Lipka J, Schlager MA, van den Heuvel DJ, Kuijpers M; et al. (2013). "TRAK/Milton motor-adaptor proteins steer mitochondrial trafficking to axons and dendrites". Neuron. 77 (3): 485–502. doi: 10.1016/j.neuron.2012.11.027 . PMID   23395375.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  17. Lipka J, Kapitein LC, Jaworski J, Hoogenraad CC (2016). "Microtubule-binding protein doublecortin-like kinase 1 (DCLK1) guides kinesin-3-mediated cargo transport to dendrites". EMBO J. 35 (3): 302–18. doi:10.15252/embj.201592929. PMC   4741305 . PMID   26758546.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  18. Gumy LF, Katrukha EA, Grigoriev I, Jaarsma D, Kapitein LC, Akhmanova A; et al. (2017). "MAP2 Defines a Pre-axonal Filtering Zone to Regulate KIF1- versus KIF5-Dependent Cargo Transport in Sensory Neurons". Neuron. 94 (2): 347–362.e7. doi: 10.1016/j.neuron.2017.03.046 . PMID   28426968.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  19. Pan X, Cao Y, Stucchi R, Hooikaas PJ, Portegies S, Will L; et al. (2019). "MAP7D2 Localizes to the Proximal Axon and Locally Promotes Kinesin-1-Mediated Cargo Transport into the Axon". Cell Rep. 26 (8): 1988–1999.e6. doi:10.1016/j.celrep.2019.01.084. PMC   6381606 . PMID   30784582.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  20. Zahavi EE, Hummel JJA, Han Y, Bar C, Stucchi R, Altelaar M; et al. (2021). "Combined kinesin-1 and kinesin-3 activity drives axonal trafficking of TrkB receptors in Rab6 carriers". Dev Cell. 56 (4): 494–508.e7. doi:10.1016/j.devcel.2021.01.010. PMC   7907685 . PMID   33571451.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  21. van Beuningen SFB, Will L, Harterink M, Chazeau A, van Battum EY, Frias CP; et al. (2015). "TRIM46 Controls Neuronal Polarity and Axon Specification by Driving the Formation of Parallel Microtubule Arrays". Neuron. 88 (6): 1208–1226. doi: 10.1016/j.neuron.2015.11.012 . PMID   26671463.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  22. Fréal A, Fassier C, Le Bras B, Bullier E, De Gois S, Hazan J; et al. (2016). "Cooperative Interactions between 480 kDa Ankyrin-G and EB Proteins Assemble the Axon Initial Segment". J Neurosci. 36 (16): 4421–33. doi:10.1523/JNEUROSCI.3219-15.2016. PMC   6601828 . PMID   27098687.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  23. Janssen AFJ, Tas RP, van Bergeijk P, Oost R, Hoogenraad CC, Kapitein LC (2017). "Myosin-V Induces Cargo Immobilization and Clustering at the Axon Initial Segment". Front Cell Neurosci. 11: 260. doi: 10.3389/fncel.2017.00260 . PMC   5581344 . PMID   28894417.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  24. Fréal A, Rai D, Tas RP, Pan X, Katrukha EA, van de Willige D; et al. (2019). "Feedback-Driven Assembly of the Axon Initial Segment". Neuron. 104 (2): 305–321.e8. doi:10.1016/j.neuron.2019.07.029. PMC   6839619 . PMID   31474508.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  25. Özkan N, Koppers M, van Soest I, van Harten A, Jurriens D, Liv N; et al. (2021). "ER - lysosome contacts at a pre-axonal region regulate axonal lysosome availability". Nature Communications. 12 (1): 4493. Bibcode:2021NatCo..12.4493O. doi:10.1038/s41467-021-24713-5. PMC   8302662 . PMID   34301956.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  26. Stiess M, Maghelli N, Kapitein LC, Gomis-Rüth S, Wilsch-Bräuninger M, Hoogenraad CC; et al. (2010). "Axon extension occurs independently of centrosomal microtubule nucleation". Science. 327 (5966): 704–7. Bibcode:2010Sci...327..704S. doi:10.1126/science.1182179. PMID   20056854.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  27. Kapitein LC, Hoogenraad CC (2015) Building the Neuronal Microtubule Cytoskeleton. Neuron 87 (3):492-506. DOI:10.1016/j.neuron.2015.05.046 PMID 26247859
  28. Harterink M, da Silva ME, Will L, Turan J, Ibrahim A, Lang AE; et al. (2017). "DeActs: genetically encoded tools for perturbing the actin cytoskeleton in single cells". Nat Methods. 14 (5): 479–482. doi:10.1038/nmeth.4257. PMC   5419720 . PMID   28394337.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  29. Lindhout FW, Portegies S, Kooistra R, Herstel LJ, Stucchi R, Hummel JJA; et al. (2021). "Centrosome-mediated microtubule remodeling during axon formation in human iPSC-derived neurons". EMBO J. 40 (10): e106798. doi:10.15252/embj.2020106798. PMC   8126955 . PMID   33835529.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  30. Akhmanova A, Hoogenraad CC, Drabek K, Stepanova T, Dortland B, Verkerk T; et al. (2001). "Clasps are CLIP-115 and -170 associating proteins involved in the regional regulation of microtubule dynamics in motile fibroblasts". Cell. 104 (6): 923–35. doi: 10.1016/s0092-8674(01)00288-4 . PMID   11290329.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  31. Stepanova T, Slemmer J, Hoogenraad CC, Lansbergen G, Dortland B, De Zeeuw CI; et al. (2003). "Visualization of microtubule growth in cultured neurons via the use of EB3-GFP (end-binding protein 3-green fluorescent protein)". J Neurosci. 23 (7): 2655–64. doi:10.1523/JNEUROSCI.23-07-02655.2003. PMC   6742099 . PMID   12684451.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  32. Yau KW, van Beuningen SF, Cunha-Ferreira I, Cloin BM, van Battum EY, Will L; et al. (2014). "Microtubule minus-end binding protein CAMSAP2 controls axon specification and dendrite development". Neuron. 82 (5): 1058–73. doi: 10.1016/j.neuron.2014.04.019 . PMID   24908486.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  33. Yau KW, Schätzle P, Tortosa E, Pagès S, Holtmaat A, Kapitein LC; et al. (2016). "Dendrites In Vitro and In Vivo Contain Microtubules of Opposite Polarity and Axon Formation Correlates with Uniform Plus-End-Out Microtubule Orientation". J Neurosci. 36 (4): 1071–85. doi:10.1523/JNEUROSCI.2430-15.2016. PMC   4728718 . PMID   26818498.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  34. Cunha-Ferreira I, Chazeau A, Buijs RR, Stucchi R, Will L, Pan X; et al. (2018). "The HAUS Complex Is a Key Regulator of Non-centrosomal Microtubule Organization during Neuronal Development". Cell Rep. 24 (4): 791–800. doi:10.1016/j.celrep.2018.06.093. PMC   6083040 . PMID   30044976.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  35. Hoogenraad CC, Akhmanova A, Howell SA, Dortland BR, De Zeeuw CI, Willemsen R; et al. (2001). "Mammalian Golgi-associated Bicaudal-D2 functions in the dynein-dynactin pathway by interacting with these complexes". EMBO J. 20 (15): 4041–54. doi:10.1093/emboj/20.15.4041. PMC   149157 . PMID   11483508.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  36. Matanis T, Akhmanova A, Wulf P, Del Nery E, Weide T, Stepanova T; et al. (2002). "Bicaudal-D regulates COPI-independent Golgi-ER transport by recruiting the dynein-dynactin motor complex". Nat Cell Biol. 4 (12): 986–92. doi:10.1038/ncb891. PMID   12447383. S2CID   7953140.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  37. van Bergeijk P, Adrian M, Hoogenraad CC, Kapitein LC (2015). "Optogenetic control of organelle transport and positioning". Nature. 518 (7537): 111–114. Bibcode:2015Natur.518..111V. doi:10.1038/nature14128. PMC   5063096 . PMID   25561173.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  38. Kevenaar JT, Bianchi S, van Spronsen M, Olieric N, Lipka J, Frias CP; et al. (2016). "Kinesin-Binding Protein Controls Microtubule Dynamics and Cargo Trafficking by Regulating Kinesin Motor Activity". Curr Biol. 26 (7): 849–61. Bibcode:2016CBio...26..849K. doi:10.1016/j.cub.2016.01.048. PMID   26948876.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  39. Hummel JJA, Hoogenraad CC (2021). "Inducible manipulation of motor-cargo interaction using engineered kinesin motors". J Cell Sci. 134 (15). doi:10.1242/jcs.258776. PMC   8353518 . PMID   34342354.
  40. Erez H, Malkinson G, Prager-Khoutorsky M, De Zeeuw CI, Hoogenraad CC, Spira ME (2007). "Formation of microtubule-based traps controls the sorting and concentration of vesicles to restricted sites of regenerating neurons after axotomy". J Cell Biol. 176 (4): 497–507. doi:10.1083/jcb.200607098. PMC   2063984 . PMID   17283182.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  41. Hellal F, Hurtado A, Ruschel J, Flynn KC, Laskowski CJ, Umlauf M; et al. (2011). "Microtubule stabilization reduces scarring and causes axon regeneration after spinal cord injury". Science. 331 (6019): 928–31. Bibcode:2011Sci...331..928H. doi:10.1126/science.1201148. PMC   3330754 . PMID   21273450.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  42. Teuling E, Ahmed S, Haasdijk E, Demmers J, Steinmetz MO, Akhmanova A; et al. (2007). "Motor neuron disease-associated mutant vesicle-associated membrane protein-associated protein (VAP) B recruits wild-type VAPs into endoplasmic reticulum-derived tubular aggregates". J Neurosci. 27 (36): 9801–15. doi:10.1523/JNEUROSCI.2661-07.2007. PMC   6672975 . PMID   17804640.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  43. Kuijpers M, Yu KL, Teuling E, Akhmanova A, Jaarsma D, Hoogenraad CC (2013). "The ALS8 protein VAPB interacts with the ER-Golgi recycling protein YIF1A and regulates membrane delivery into dendrites". EMBO J. 32 (14): 2056–72. doi:10.1038/emboj.2013.131. PMC   3715857 . PMID   23736259.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  44. Tortosa E, Sengupta Ghosh A, Li Q, Wong WR, Hinkle T, Sandoval W; et al. (2022). "Stress-induced vesicular assemblies of dual leucine zipper kinase are signaling hubs involved in kinase activation and neurodegeneration". EMBO J. 41 (14): e110155. doi:10.15252/embj.2021110155. PMC   9289706 . PMID   35611591.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  45. Adrian M, Weber M, Tsai MC, Glock C, Kahn OI, Phu L; et al. (2023). "Polarized microtubule remodeling transforms the morphology of reactive microglia and drives cytokine release". Nat Commun. 14 (1): 6322. Bibcode:2023NatCo..14.6322A. doi:10.1038/s41467-023-41891-6. PMC   10562429 . PMID   37813836.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  46. "Casper Hoogenraad Pubmed".
  47. "Casper Hoogenraad Google Scholar profile".
  48. "Casper Hoogenraad ORCID profile".
  49. "ASCB profile". ASCB Press - Mary Spiro. 8 July 2020.
  50. "Genentech lab". Genentech, member of the Roche group.
  51. "EMBO member". EMBO Press. Archived from the original on 2015-12-01.
  52. "Casper Hoogenraad - DJA-KNAW" . Retrieved 2020-08-02.
  53. "Casper Hoogenraad - YAE". 18 December 2016. Retrieved 2020-08-02.
  54. "Editorial Board: Neuron". Cell Press.
  55. "Editorial Board: The EMBO Journal". EMBO Press.
  56. "IBRO Kemali Prize". IBRO, IBRO, the International Brain Research Organization. Archived from the original on 2015-09-05.
  57. A Day in the Life of a Motor Protein (Youtube). REDRUM, Ede, The Netherlands.