Genentech

Last updated

Genentech, Inc.
Company type Subsidiary
Nasdaq: DNA
Industry Biotechnology
Founded1976;49 years ago (1976)
Headquarters South San Francisco, California, United States
Key people
Products Avastin, Herceptin, Rituxan, Perjeta, Kadcyla, Gazyva, Tarceva, Ocrevus, Polivy, Tecentriq, Xofluza, Hemlibra, Venclexta, Esbriet, Cotellic, Alecensa, Zelboraf, Nutropin, Actemra, Lucentis, Xolair, Activase, Cathflo Activase, Xeloda, Boniva, TNKase, CellCept, Pegasys, Pulmozyme, Tamiflu, Valcyte, Anaprox, Cytovene, EC-Naprosyn, Erivedge, Fuzeon, Invirase, Klonopin, Kytril, Naprosyn, Rocephin, Roferon-A, Romazicon, Valium, Xenical, Zenapax
RevenueIncrease2.svg $26.4 billion (2020) [4]
Number of employees
13,539 (July 2021)
Parent Roche
Website gene.com
Footnotes /references
[5]

Genentech, Inc. is an American biotechnology corporation headquartered in South San Francisco, California, wholly owned by the Swiss multinational pharmaceutical company, the Roche Group. It became an independent subsidiary of Roche in 2009. Genentech Research and Early Development operates as an independent center within Roche. [6] Historically, the company is regarded as the world's first biotechnology company. [7]

Contents

As of July 2021, Genentech employed 13,539 people. [8]

History

The company was founded in 1976 by venture capitalist Robert A. Swanson and biochemist Herbert Boyer. [9] [10] Boyer is considered to be a pioneer in the field of recombinant DNA technology. In 1973, Boyer and his colleague Stanley Norman Cohen demonstrated that restriction enzymes could be used as "scissors" to cut DNA fragments of interest from one source, to be ligated into a similarly cut plasmid vector. [11] While Cohen returned to the laboratory in academia, Swanson contacted Boyer to found the company. [9] [12] Boyer worked with Arthur Riggs and Keiichi Itakura from the Beckman Research Institute, and the group became the first to successfully express a human gene in bacteria when they produced the hormone somatostatin in 1977. [13] David Goeddel and Dennis Kleid were then added to the group, and contributed to its success with synthetic human insulin in 1978.

In 1990 F. Hoffmann-La Roche AG acquired a majority stake in Genentech. [14]

In 2006 Genentech acquired Tanox in its first acquisition deal. Tanox had started developing Xolair and development was completed in collaboration with Novartis and Genentech; the acquisition allowed Genentech to keep more of the revenue. [15]

In March 2009 Roche acquired Genentech by buying shares it didn't already control for approximately $46.8 billion. [16] [17] [18]

In July 2014, Genentech/Roche acquired Seragon for its pipeline of small-molecule cancer drug candidates for $725 million cash upfront, with an additional $1 billion of payments dependent on successful development of products in Seragon's pipeline. [19]

Research

Genentech is a pioneering research-driven biotechnology company [14] that has continued to conduct R&D internally as well as through collaborations. [20] [21]

Genentech's research collaborations include:

Facilities

Building 31, one of the newer buildings at Genentech headquarters Genentech Building 31.jpg
Building 31, one of the newer buildings at Genentech headquarters

Genentech's corporate headquarters are in South San Francisco, California ( 37°39′25″N122°22′44″W / 37.657°N 122.379°W / 37.657; -122.379 (Genentech) ), with additional manufacturing facilities in Vacaville, California; Oceanside, California; and Hillsboro, Oregon. In March 2024, it was announced the Swiss pharmaceutical company, Lonza had acquired the Vacaville site from parent-company, Roche for $1.2 billion. [31]

In December 2006, Genentech sold its Porriño, Spain, facility to Lonza and acquired an exclusive right to purchase Lonza's mammalian cell culture manufacturing facility under construction in Singapore. In June 2007, Genentech began the construction and development of an E. coli manufacturing facility, also in Singapore, for the worldwide production of Lucentis (ranibizumab injection) bulk drug substance.[ citation needed ]

In 2023, the company announced plans to close down its manufacturing facility in South San Francisco, while expanding its manufacturing capabilities in Oceanside. [32] [33]

Public-private engagement

Political lobbying

Genentech is a donor to the Center for Health Care Strategies, a non-governmental organization that lobbies the United States Government on issues related to Medicaid. [34]

Genentech Inc Political Action Committee

Genentech Inc Political Action Committee is a U.S. Federal Political Action Committee (PAC), created to "aggregate contributions from members or employees and their families to donate to candidates for federal office". [35]

Controversy

Disputes

In November 1999, Genentech agreed to pay the University of California, San Francisco $200 million to settle a nine-year-old patent dispute. In 1990, UCSF sued Genentech for $400 million in compensation for alleged theft of technology developed at the university and covered by a 1982 patent.[ citation needed ] Genentech claimed that they developed Protropin (recombinant somatotropin/human growth hormone), independently of UCSF. A jury ruled that the university's patent was valid in July 1999, but wasn't able to decide whether Protropin was based upon UCSF research or not. Protropin, a drug used to treat dwarfism, was Genentech's first marketed drug and its $2 billion in sales has contributed greatly to its position as an industry leader.[ citation needed ] The settlement was to be divided as follows: $30 million to the University of California General Fund, $85 million to the three inventors and two collaborating scientists, $50 million towards a new teaching and research campus for UCSF, and $35 million to support university-wide research. [36]

In 2009, The New York Times reported that Genentech's talking points on health care reform appeared verbatim in the official statements of several Members of Congress during the national health care reform debate. [37] Two U.S. Representatives, Joe Wilson and Blaine Luetkemeyer, both issued the same written statements: "One of the reasons I have long supported the U.S. biotechnology industry is that it is a homegrown success story that has been an engine of job creation in this country. Unfortunately, many of the largest companies that would seek to enter the biosimilar market have made their money by outsourcing their research to foreign countries like India." The statement was originally drafted by lobbyists for Genentech.

Products timeline

See also

Related Research Articles

<span class="mw-page-title-main">Roche</span> Swiss multinational healthcare company

F. Hoffmann-La Roche AG, commonly known as Roche, is a Swiss multinational holding healthcare company that operates worldwide under two divisions: Pharmaceuticals and Diagnostics. Its holding company, Roche Holding AG, has shares listed on the SIX Swiss Exchange. The company headquarters are located in Basel. Roche is the fifth-largest pharmaceutical company in the world by revenue and the leading provider of cancer treatments globally. In 2023, the company’s seat in Forbes Global 2000 was 76.

<span class="mw-page-title-main">Trastuzumab</span> Medication

Trastuzumab, sold under the brand name Herceptin among others, is a monoclonal antibody used to treat breast cancer and stomach cancer. It is specifically used for cancer that is HER2 receptor positive. It may be used by itself or together with other chemotherapy medication. Trastuzumab is given by slow injection into a vein and injection just under the skin.

Bevacizumab, sold under the brand name Avastin among others, is a monoclonal antibody medication used to treat a number of types of cancers and a specific eye disease. For cancer, it is given by slow injection into a vein (intravenous) and used for colon cancer, lung cancer, ovarian cancer, glioblastoma, hepatocellular carcinoma, and renal-cell carcinoma. In many of these diseases it is used as a first-line therapy. For age-related macular degeneration it is given by injection into the eye (intravitreal).

<span class="mw-page-title-main">Cancer immunotherapy</span> Artificial stimulation of the immune system to treat cancer

Cancer immunotherapy (immuno-oncotherapy) is the stimulation of the immune system to treat cancer, improving the immune system's natural ability to fight the disease. It is an application of the fundamental research of cancer immunology (immuno-oncology) and a growing subspecialty of oncology.

<span class="mw-page-title-main">Lapatinib</span> Cancer medication

Lapatinib (INN), used in the form of lapatinib ditosylate (USAN) is an orally active drug for breast cancer and other solid tumours. It is a dual tyrosine kinase inhibitor which interrupts the HER2/neu and epidermal growth factor receptor (EGFR) pathways. It is used in combination therapy for HER2-positive breast cancer. It is used for the treatment of patients with advanced or metastatic breast cancer whose tumors overexpress HER2 (ErbB2).

<span class="mw-page-title-main">Pertuzumab</span> Pharmaceutical drug

Pertuzumab, sold under the brand name Perjeta, is a monoclonal antibody used in combination with trastuzumab and docetaxel for the treatment of metastatic HER2-positive breast cancer; it also used in the same combination as a neoadjuvant in early HER2-positive breast cancer.

<span class="mw-page-title-main">Neratinib</span> Chemical compound

Neratinib (INN), sold under the brand name Nerlynx, is a tyrosine kinase inhibitor anti-cancer medication used for the treatment of breast cancer.

<span class="mw-page-title-main">Antibody–drug conjugate</span> Class of biopharmaceutical drugs

Antibody–drug conjugates or ADCs are a class of biopharmaceutical drugs designed as a targeted therapy for treating cancer. Unlike chemotherapy, ADCs are intended to target and kill tumor cells while sparing healthy cells. As of 2019, some 56 pharmaceutical companies were developing ADCs.

<span class="mw-page-title-main">Trastuzumab emtansine</span> Pharmaceutical drug

Trastuzumab emtansine, sold under the brand name Kadcyla, is an antibody-drug conjugate consisting of the humanized monoclonal antibody trastuzumab (Herceptin) covalently linked to the cytotoxic agent DM1. Trastuzumab alone stops growth of cancer cells by binding to the HER2 receptor, whereas trastuzumab emtansine undergoes receptor-mediated internalization into cells, is catabolized in lysosomes where DM1-containing catabolites are released and subsequently bind tubulin to cause mitotic arrest and cell death. Trastuzumab binding to HER2 prevents homodimerization or heterodimerization (HER2/HER3) of the receptor, ultimately inhibiting the activation of MAPK and PI3K/AKT cellular signalling pathways. Because the monoclonal antibody targets HER2, and HER2 is only over-expressed in cancer cells, the conjugate delivers the cytotoxic agent DM1 specifically to tumor cells. The conjugate is abbreviated T-DM1.

Margetuximab, sold under the brand name Margenza, is a chimeric IgG monoclonal antibody medication against HER2 used for the treatment of cancer.

Seagen Inc. is an American biotechnology company focused on developing and commercializing innovative, empowered monoclonal antibody-based therapies for the treatment of cancer. The company, headquartered in Bothell, Washington, is the industry leader in antibody-drug conjugates or ADCs, a technology designed to harness the targeting ability of monoclonal antibodies to deliver cell-killing agents directly to cancer cells. Antibody-drug conjugates are intended to spare non-targeted cells and thus reduce many of the toxic effects of traditional chemotherapy, while potentially enhancing antitumor activity.

ImmunoGen, Inc. was a biotechnology company focused on the development of antibody-drug conjugate (ADC) therapeutics for the treatment of cancer. ImmunoGen was founded in 1981 and was headquartered in Waltham, Massachusetts.

Celltrion, Inc. is a biopharmaceutical company headquartered in Incheon, South Korea. Celltrion Healthcare conducts worldwide marketing, sales, and distribution of biological medicines developed by Celltrion. Celltrion's founder, Seo Jung-jin, is the richest person in South Korea. Seo Jung-jin, its founder was awarded the 2021 EY World Entrepreneur Of The Year.

<span class="mw-page-title-main">Atezolizumab</span> Monoclonal anti-PD-L1 antibody

Atezolizumab, sold under the brand name Tecentriq among others, is a monoclonal antibody medication used to treat urothelial carcinoma, non-small cell lung cancer (NSCLC), small cell lung cancer (SCLC), hepatocellular carcinoma and alveolar soft part sarcoma, but discontinued for use in triple-negative breast cancer (TNBC). It is a fully humanized, engineered monoclonal antibody of IgG1 isotype against the protein programmed cell death-ligand 1 (PD-L1).

<span class="mw-page-title-main">Sacituzumab govitecan</span> Antibody-drug conjugate

Sacituzumab govitecan, sold under the brand name Trodelvy by Gilead Sciences, is a Trop-2-directed antibody and topoisomerase inhibitor drug conjugate used for the treatment of metastatic triple-negative breast cancer and metastatic urothelial cancer.

<span class="mw-page-title-main">Abemaciclib</span> Anti-breast cancer medication

Abemaciclib, sold under the brand name Verzenio among others, is a medication for the treatment of advanced or metastatic breast cancers. It was developed by Eli Lilly and it acts as a CDK inhibitor selective for CDK4 and CDK6.

<span class="mw-page-title-main">Tucatinib</span> Chemical compound

Tucatinib, sold under the brand name Tukysa, is an anticancer medication used for the treatment of HER2-positive breast cancer. It is a small molecule inhibitor of HER2. It was developed by Array BioPharma and licensed to Cascadian Therapeutics.

<span class="mw-page-title-main">Trastuzumab deruxtecan</span> Medication

Trastuzumab deruxtecan, sold under the brand name Enhertu, is an antibody-drug conjugate consisting of the humanized monoclonal antibody trastuzumab (Herceptin) covalently linked to the topoisomerase I inhibitor deruxtecan. It is licensed for the treatment of breast cancer or gastric or gastroesophageal adenocarcinoma. Trastuzumab binds to and blocks signaling through epidermal growth factor receptor 2 (HER2/neu) on cancers that rely on it for growth. Additionally, once bound to HER2 receptors, the antibody is internalized by the cell, carrying the bound deruxtecan along with it, where it interferes with the cell's ability to make DNA structural changes and replicate its DNA during cell division, leading to DNA damage when the cell attempts to replicate itself, destroying the cell.

Pertuzumab/trastuzumab/hyaluronidase, sold under the brand name Phesgo, is a fixed-dose combination medication to treat adults with HER2-positive breast cancer that has spread to other parts of the body, and for treatment of adults with early HER2-positive breast cancer. It contains pertuzumab, trastuzumab, and hyaluronidase–zzxf. It is injected under the skin via subcutaneous injection in the thigh. In the European Union, Phesgo contains the active ingredients pertuzumab and trastuzumab along with the enzyme vorhyaluronidase alfa.

Trastuzumab/hyaluronidase, sold under the brand name Herceptin SC among others, is a fixed-dose combination medication for the treatment of HER2-overexpressing breast cancer in adults. It is a combination of trastuzumab and hyaluronidase.

References

  1. "DEPARTURE OF ALEXANDER HARDY & APPOINTMENT OF ASHLEY MAGARGEE AS INTERIM CHIEF EXECUTIVE OFFICER GENENTECH". Genentech. Retrieved November 3, 2023.
  2. Taylor, Nick Paul (May 11, 2020). "Genentech lures Regev from Broad Institute to lead research and early development". FierceBiotech. Retrieved May 25, 2020.
  3. "Changes to the Roche Enlarged Corporate Executive Committee" (Press release). Basel, Switzerland: F. Hoffmann-La Roche Ltd. globenewswire. May 11, 2020. Retrieved May 25, 2020.
  4. "Genentech".
  5. "FORM 10-K".
  6. "About Us". Gene.com. Archived from the original on August 4, 2014. Retrieved August 22, 2014.
  7. Russo, Eugene (January 2003). "Special Report: The birth of biotechnology". Nature. 421 (6921): 456–457. Bibcode:2003Natur.421..456R. doi: 10.1038/nj6921-456a . PMID   12540923. S2CID   4357773.
  8. "Working at Genentech". Great Place to Work. Retrieved November 18, 2021.
  9. 1 2 Russo, E. (2003). "Special Report: The birth of biotechnology". Nature. 421 (6921): 456–457. Bibcode:2003Natur.421..456R. doi: 10.1038/nj6921-456a . PMID   12540923. S2CID   4357773.
  10. Genentech. "Corporate Overview". Archived from the original on April 18, 2012. Genentech was founded by venture capitalist Robert A. Swanson and biochemist Dr. Herbert W. Boyer. After a meeting in 1976, the two decided to start a biotechnology company, Genentech. Although the two confidently assert that it was the first biotech company, others clearly came before, including Cetus Corporation which was founded in 1971.
  11. Cohen, S.; Chang, A.; Boyer, H.; Helling, R. (1973). "Construction of biologically functional bacterial plasmids in vitro". Proceedings of the National Academy of Sciences of the United States of America. 70 (11): 3240–3244. Bibcode:1973PNAS...70.3240C. doi: 10.1073/pnas.70.11.3240 . PMC   427208 . PMID   4594039.
  12. "In January 1976, 28-year-old venture capitalist Robert Swanson entered the picture. A successful cold-call to Boyer's lab led to a couple of beers—and an agreement to start a pharmaceutical company. Investing $500 each, they capitalized a new business, Genentech, to seek practical uses for Boyer and Cohen's engineered proteins. Swanson raised money for staff and labs..." "Who made America? Herbert Boyer". PBS. Archived from the original on June 20, 2012. Retrieved August 28, 2017.
  13. Itakura, K.; Hirose, T.; Crea, R.; Riggs, A. D.; Heyneker, H. L.; Bolivar, F.; Boyer, H. W. (1977). "Expression in Escherichia coli of a chemically synthesized gene for the hormone somatostatin". Science. 198 (4321): 1056–1063. Bibcode:1977Sci...198.1056I. doi:10.1126/science.412251. PMID   412251.
  14. 1 2 Fisher, Lawrence M. (October 1, 2000). "Genentech: Survivor Strutting Its Stuff". The New York Times. Archived from the original on April 4, 2017. Retrieved February 19, 2017.
  15. "Genentech strikes $919M deal to buy Tanox". FierceBiotech. November 9, 2006. Archived from the original on April 4, 2017.
  16. Morse, Andrew (May 10, 2006). "Chugai Shares Post Healthy Gain On Prospects for Cancer Drug". The Wall Street Journal. Retrieved September 26, 2008.
  17. Staff writers (July 21, 2008). "Roche Makes $43.7B Bid for Genentech". Genetic Engineering & Biotechnology News . ISSN   1935-472X. Archived from the original on February 3, 2009. Retrieved September 26, 2008.
  18. Pollack, Andrew (March 12, 2009). "Roche Agrees to Buy Genentech for $46.8 Billion". The New York Times. ISSN   0362-4331 . Retrieved April 3, 2020.
  19. Staff writers (July 2, 2014). "Genentech acquires Seragon". Genetic Engineering & Biotechnology News . Archived from the original on July 14, 2014. Retrieved July 2, 2014.
  20. "Three Years After Merger, Genentech R&D Outshines That of Roche's | GEN News Highlights". Genetic Engineering News. July 3, 2012. Archived from the original on April 5, 2017. Retrieved September 18, 2016.
  21. "Living 10 Years in the Future". Genentech. Archived from the original on August 1, 2016.
  22. Carroll, John (October 3, 2008). "Genentech teams with Glycart on antibody program". FierceBiotech. Archived from the original on April 4, 2017. Retrieved September 18, 2016.
  23. "UCSF enters drug discovery agreement with Genentech". FierceBiotech. February 19, 2010. Archived from the original on April 4, 2017. Retrieved September 18, 2016.
  24. Carroll, John (October 20, 2014). "Genentech pays $150M upfront to partner on NewLink's immuno-oncology drug". FierceBiotech. Archived from the original on June 14, 2016. Retrieved September 18, 2016.
  25. "The Promise and Challenge of Big Data for Pharma". Archived from the original on April 5, 2017. Retrieved April 5, 2017.
  26. Herper, Matthew. "Surprise! With $60 Million Genentech Deal, 23andMe Has A Business Plan". Forbes. Archived from the original on August 16, 2017. Retrieved August 16, 2017.
  27. Garde, Damian (October 20, 2015). "Genentech co-signs Nimbus' computer-aided R&D with an oncology pact". FierceBiotech. Archived from the original on July 11, 2016. Retrieved September 18, 2016.
  28. Lawrence, Stacy (June 23, 2016). "Epizyme nabs combo trial deal with Genentech for NHL candidate | FierceBiotech". www.fiercebiotech.com. Archived from the original on September 6, 2016. Retrieved September 18, 2016.
  29. "Carmot to Use Lead-Identification Technology in Collab with Genentech". News: Discovery & Development. Genetic Engineering & Biotechnology News (Paper). 36 (14): 17. August 2016.
  30. Lawrence, Stacy (September 7, 2016). "Genentech, BioLineRx pair up a checkpoint inhibitor combo". FierceBiotech. Archived from the original on September 11, 2016. Retrieved September 18, 2016.
  31. "Lonza to acquire biologics site in Vacaville, US from Roche for $1.2bn - Pharmafile". pharmafile.com. March 20, 2024. Retrieved March 20, 2024.
  32. Varian, Ethan (March 25, 2023). "Genentech lays off 265 workers in South San Francisco, closes manufacturing plant". The Mercury News .
  33. Rocha, Natalie (February 21, 2023). "Genentech expands in Oceanside with $450M biotech manufacturing facility and 150 jobs". The San Diego Union-Tribune .
  34. "History & Funders". Center for Health Care Strategies. 2021. Archived from the original on July 12, 2022. Retrieved July 12, 2022.
  35. Genentech Inc Political Action Committee, Bloomberg Business, n.d., archived from the original on August 20, 2015, retrieved July 17, 2015
  36. Genentech Press Release. "University of California and Genentech Settle Patent Infringement Lawsuits". Genentech, Inc. Archived from the original on August 22, 2013. Retrieved November 16, 2015.
  37. Pear, Robert. "In House, Many Spoke with One Voice: Lobbyists" Archived August 31, 2019, at the Wayback Machine , New York Times, November 15, 2009.

Further reading