Chain (algebraic topology)

Last updated

In algebraic topology, a k-chain is a formal linear combination of the k-cells in a cell complex. In simplicial complexes (respectively, cubical complexes), k-chains are combinations of k-simplices (respectively, k-cubes), [1] [2] [3] but not necessarily connected. Chains are used in homology; the elements of a homology group are equivalence classes of chains.

Contents

Definition

For a simplicial complex , the group of -chains of is given by:

where are singular -simplices of . Note that any element in not necessary to be a connected simplicial complex.

Integration on chains

Integration is defined on chains by taking the linear combination of integrals over the simplices in the chain with coefficients (which are typically integers). The set of all k-chains forms a group and the sequence of these groups is called a chain complex.

Boundary operator on chains

The boundary of a polygonal curve is a linear combination of its nodes; in this case, some linear combination of A1 through A6. Assuming the segments all are oriented left-to-right (in increasing order from Ak to Ak+1), the boundary is A6 - A1. Chainline.svg
The boundary of a polygonal curve is a linear combination of its nodes; in this case, some linear combination of A1 through A6. Assuming the segments all are oriented left-to-right (in increasing order from Ak to Ak+1), the boundary is A6 A1.
A closed polygonal curve, assuming consistent orientation, has null boundary. Closed polygonal line.svg
A closed polygonal curve, assuming consistent orientation, has null boundary.

The boundary of a chain is the linear combination of boundaries of the simplices in the chain. The boundary of a k-chain is a (k1)-chain. Note that the boundary of a simplex is not a simplex, but a chain with coefficients 1 or 1 – thus chains are the closure of simplices under the boundary operator.

Example 1: The boundary of a path is the formal difference of its endpoints: it is a telescoping sum. To illustrate, if the 1-chain is a path from point to point , where , and are its constituent 1-simplices, then

Example 2: The boundary of the triangle is a formal sum of its edges with signs arranged to make the traversal of the boundary counterclockwise.

A chain is called a cycle when its boundary is zero. A chain that is the boundary of another chain is called a boundary. Boundaries are cycles, so chains form a chain complex, whose homology groups (cycles modulo boundaries) are called simplicial homology groups.


Example 3: The plane punctured at the origin has nontrivial 1-homology group since the unit circle is a cycle, but not a boundary.

In differential geometry, the duality between the boundary operator on chains and the exterior derivative is expressed by the general Stokes' theorem.

Related Research Articles

<span class="mw-page-title-main">Simplex</span> Multi-dimensional generalization of triangle

In geometry, a simplex is a generalization of the notion of a triangle or tetrahedron to arbitrary dimensions. The simplex is so-named because it represents the simplest possible polytope made with line segments in any given dimension.

In mathematics, a chain complex is an algebraic structure that consists of a sequence of abelian groups and a sequence of homomorphisms between consecutive groups such that the image of each homomorphism is included in the kernel of the next. Associated to a chain complex is its homology, which describes how the images are included in the kernels.

In mathematics, homology is a general way of associating a sequence of algebraic objects, such as abelian groups or modules, with other mathematical objects such as topological spaces. Homology groups were originally defined in algebraic topology. Similar constructions are available in a wide variety of other contexts, such as abstract algebra, groups, Lie algebras, Galois theory, and algebraic geometry.

<span class="mw-page-title-main">Simplicial complex</span>

In mathematics, a simplicial complex is a set composed of points, line segments, triangles, and their n-dimensional counterparts. Simplicial complexes should not be confused with the more abstract notion of a simplicial set appearing in modern simplicial homotopy theory. The purely combinatorial counterpart to a simplicial complex is an abstract simplicial complex.

In the mathematical disciplines of topology and geometry, an orbifold is a generalization of a manifold. Roughly speaking, an orbifold is a topological space which is locally a finite group quotient of a Euclidean space.

In algebraic topology, the Betti numbers are used to distinguish topological spaces based on the connectivity of n-dimensional simplicial complexes. For the most reasonable finite-dimensional spaces, the sequence of Betti numbers is 0 from some point onward, and they are all finite.

In mathematics, particularly algebraic topology and homology theory, the Mayer–Vietoris sequence is an algebraic tool to help compute algebraic invariants of topological spaces, known as their homology and cohomology groups. The result is due to two Austrian mathematicians, Walther Mayer and Leopold Vietoris. The method consists of splitting a space into subspaces, for which the homology or cohomology groups may be easier to compute. The sequence relates the (co)homology groups of the space to the (co)homology groups of the subspaces. It is a natural long exact sequence, whose entries are the (co)homology groups of the whole space, the direct sum of the (co)homology groups of the subspaces, and the (co)homology groups of the intersection of the subspaces.

In algebraic topology, singular homology refers to the study of a certain set of algebraic invariants of a topological space X, the so-called homology groups Intuitively, singular homology counts, for each dimension n, the n-dimensional holes of a space. Singular homology is a particular example of a homology theory, which has now grown to be a rather broad collection of theories. Of the various theories, it is perhaps one of the simpler ones to understand, being built on fairly concrete constructions.

In topology, a branch of mathematics, intersection homology is an analogue of singular homology especially well-suited for the study of singular spaces, discovered by Mark Goresky and Robert MacPherson in the fall of 1974 and developed by them over the next few years.

<span class="mw-page-title-main">Čech cohomology</span>

In mathematics, specifically algebraic topology, Čech cohomology is a cohomology theory based on the intersection properties of open covers of a topological space. It is named for the mathematician Eduard Čech.

In mathematics, a simplicial set is an object composed of simplices in a specific way. Simplicial sets are higher-dimensional generalizations of directed graphs, partially ordered sets and categories. Formally, a simplicial set may be defined as a contravariant functor from the simplex category to the category of sets. Simplicial sets were introduced in 1950 by Samuel Eilenberg and Joseph A. Zilber.

In algebraic topology, simplicial homology is the sequence of homology groups of a simplicial complex. It formalizes the idea of the number of holes of a given dimension in the complex. This generalizes the number of connected components.

<span class="mw-page-title-main">Triangulation (topology)</span>

In mathematics, topology generalizes the notion of triangulation in a natural way as follows:

In topology, Borel−Moore homology or homology with closed support is a homology theory for locally compact spaces, introduced by Armand Borel and John Moore in 1960.

In mathematics, Kan complexes and Kan fibrations are part of the theory of simplicial sets. Kan fibrations are the fibrations of the standard model category structure on simplicial sets and are therefore of fundamental importance. Kan complexes are the fibrant objects in this model category. The name is in honor of Daniel Kan.

In algebraic topology, the pushforward of a continuous function  : between two topological spaces is a homomorphism between the homology groups for .

In mathematics, a Δ-setS, often called a semi-simplicial set, is a combinatorial object that is useful in the construction and triangulation of topological spaces, and also in the computation of related algebraic invariants of such spaces. A Δ-set is somewhat more general than a simplicial complex, yet not quite as general as a simplicial set.

In mathematics, a Stanley–Reisner ring, or face ring, is a quotient of a polynomial algebra over a field by a square-free monomial ideal. Such ideals are described more geometrically in terms of finite simplicial complexes. The Stanley–Reisner ring construction is a basic tool within algebraic combinatorics and combinatorial commutative algebra. Its properties were investigated by Richard Stanley, Melvin Hochster, and Gerald Reisner in the early 1970s.

<span class="mw-page-title-main">Pseudomanifold</span>

In mathematics, a pseudomanifold is a special type of topological space. It looks like a manifold at most of its points, but it may contain singularities. For example, the cone of solutions of forms a pseudomanifold.

Discrete calculus or the calculus of discrete functions, is the mathematical study of incremental change, in the same way that geometry is the study of shape and algebra is the study of generalizations of arithmetic operations. The word calculus is a Latin word, meaning originally "small pebble"; as such pebbles were used for calculation, the meaning of the word has evolved and today usually means a method of computation. Meanwhile, calculus, originally called infinitesimal calculus or "the calculus of infinitesimals", is the study of continuous change.

References

  1. Hatcher, Allen (2002). Algebraic Topology. Cambridge University Press. ISBN   0-521-79540-0.
  2. Lee, John M. (2011). Introduction to topological manifolds (2nd ed.). New York: Springer. ISBN   978-1441979391. OCLC   697506452.
  3. Kaczynski, Tomasz; Mischaikow, Konstantin; Mrozek, Marian (2004). Computational homology. Applied Mathematical Sciences. Vol. 157. New York: Springer-Verlag. doi:10.1007/b97315. ISBN   0-387-40853-3. MR   2028588.